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Motivation for TL

High-quality labels often involve laborious human annotations or slow and expensive

scientific measurements.

Transfer Learning: utilize different but related source domain to facilitate the learning on

the target domain?

Goal: Efficient and flexible method for the inference of general estimating equations (GEE)

under the TL.
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Problem Formulation

Source sample DS = {Zi}ni=1 ∼ P = PX × PY |X where Zi = (XT
i , Yi)

T.

Target sample DT = {Xi}Ni=n+1 ∼ QX with N = n+m, while the responses Yi in DT

are not accessible.

Our goal is the inference of a p-dimensional parameter θ0 identified by the GEE

EQ{g(Z,θ0)} = 0, (1)

where Q = QX ×QY |X and g(Z,θ) = (g1(Z,θ), . . . , gr(Z,θ))
T with r ≥ p.

Covariate shift TL: we assume PY |X = QY |X , while PX and QX can differ.
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Density ratio weighting

The most common method for the covariate shift is the density ratio weighting (DRW).

Let r0(x) = q0(x)/p0(x) be the density ratio of QX and PX . Then,

EP {r0(X)g(Z,θ)} = EQ {g(Z,θ)} ,

With a consistent r̂(x), we can obtain an estimate θ̂drw from the DRW moment function

1
n

∑n
i=1 g̃(Zi,θ, r̂) = 0, where

g̃(Zi,θ, r̂) = r̂(Xi)g(Zi,θ) for i = 1, . . . , n, (2)

with either the empirical likelihood or the GMM.

Drawbacks of the DRW:

The accuracy of θ̂drw crucially hinges on that of r̂.

The EL ratio is not asymptotically χ2 distributed, and requires a Bootstrap to approximate

its asymptotic distribution.
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Neyman orthogonal estimating function

To alleviate the effect of the nuisance function estimation, we construct an estimating

function which has the Neyman orthogonal property (Neyman, 1959; Chernozhukov et al.,

2018).

Let Wi = (Xi, δiYi, δi), where δi = 0 if the i-th observation belongs to the source sample

and δi = 1 otherwise.

Let m0(x,θ) = E{g(Z,θ)|X = x}, the constructed estimating function is

Ψ(Wi,θ, η̂) =
1− δi
1− τ

r̂(Xi){g(Zi,θ)− m̂(Xi,θ)}+
δi
τ
m̂(Xi,θ), (3)

for i = 1, · · · , N , where η̂ = (r̂, m̂) is an estimate of (r0,m), δi is a binary indicator of

whether the i-th observation belongs to the target sample or not.
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Orthogonal estimating function

The following conditions are required for the sample and target populations.

Condition 1

(i) The covariate distributions PX and QX are absolutely continuous with densities p0(x) and

q0(x) supported on X , where X ⊂ Rd is compact. (ii) The conditional distributions

PY |X=x = QY |X=x for every x ∈ X .

Condition 2

(i) The parameter θ0 ∈ int(Θ) is the unique solution to the moment condition EQ{g(Z,θ)} = 0.

(ii) EQ{supθ∈Θ ∥g(Z,θ)∥α2 } < ∞ for some α > 2. (iii) The eigenvalues of EQ{g(Z,θ)⊗2} are

bounded away from zero and infinity. (iv) g(z,θ) is continuously differentiable in a neighborhood

N of θ0 with EQ{supθ∈N ∥∂g(Z,θ)/∂θT∥2} < ∞, and EQ{∂g(Z,θ0)/∂θ} is of full rank.
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Orthogonal estimating function

Theorem 1

Under Conditions 1 and 2, the following results hold.

(i) Ψ(W ,θ0,η) is Neyman orthogonal in the sense that

∂

∂τ
EF {Ψ(W ,θ0,η(Fτ ))}

∣∣∣
τ=0

= 0. (4)

(ii) For any candidate η(x,θ) = (r(x),m(x,θ)),

∥EF {Ψ(W ,θ0,η)}∥1 ≤ ∥r(X)− r0(X)∥L2(PX)(
r∑

j=1

∥mj(X,θ)−m0j(X,θ)∥L2(PX)).

Ψ(W ,θ,η) is robust against the estimation error of nuisance functions.
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Challenges

The proposed estimating function

Ψ(Wi,θ, η̂) =
1− δi
1− τ

r̂(Xi){g(Zi,θ)− m̂(Xi,θ)}+
δi
τ
m̂(Xi,θ)

s similar to that of the AIPW (Robins et al., 1994) and the double machine learning (DML,

Chernozhukov et al., 2018), but is more challenging as we consider the GEE rather than only the

average treatment effect.

In general cases, such as the quantile regression, the conditional mean function m(x,θ) is

parametric-dependent, so we have to estimate it at all possible θ, which is practically

infeasible.

Most existing estimation methods for the density ratio function r(x) are not flexible enough

to accommodate complex function structures.
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Density ratio estimation

Conventional methods, such as the kernel smoothing, suffer from instability and the curse of

dimensionality.

We employ a ϕ-divergence based density ratio estimation approach, which can be solved via

an empirical risk minimization problem and can accommodates a variety of machine learning

algorithms.

The ϕ-divergence of Q from P is defined by:

Dϕ(Q∥P ) =

∫
ϕ

(
q0(x)

p0(x)

)
p0(x)dx, (5)

where ϕ : R+ → R is a convex and lower semicontinuous function.

Let ϕ∗ be the Frenchel dual function of ϕ defined by ϕ∗(v) = supu∈R{uv − ϕ(u)}.
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Density ratio estimation

For each ϕ-function, we define

ℓ1,ϕ(r) = ϕ∗{ϕ′(r)} and ℓ2,ϕ(r) = ϕ′(r). (6)

The dual characteristic of Dϕ(Q∥P ) induces an identification condition for the density ratio r0 as

presented in the following lemma.

Lemma 1
For any convex and lower semicontinuous function ϕ : R+ → R, the true density ratio satisfies

r0 = argmin
r∈F

Lϕ(r) with Lϕ(r) = EP {ℓ1,ϕ(r)} − EQ{ℓ2,ϕ(r)}, (7)

where the candidate class F is any class of nonnegative functions that contains r0.

Han Yan TL with GEE July 12, 2024 10 / 29



Density ratio estimation

Table: Examples of ϕ-divergence, the associated Fenchel conjugate and the objective functions.

Divergence ϕ(u) ϕ∗(v) ℓ1,ϕ(r) ℓ2,ϕ(r)

Kullback-Leibler u log(u) exp(v − 1) r log(r) + 1

Reverse KL − log(u) −1− log(−v) log(r) + 1 −r−1

Pearson χ2 (u− 1)2 v2/4 + v r2 − 1 2(r − 1)

Squared Hellinger (
√
u− 1)2 v/(v − 1) r

1
2 − 1 1− r−

1
2

With the two samples from P and Q, the density ratio r0 can be estimated with the sample

objective function

r̂ = argmin
r∈FN

{
1

n

n∑
i=1

ℓ1,ϕ{r(Xi)} −
1

m

N∑
i=n+1

ℓ2,ϕ{r(Xi)}

}
. (8)

Different from the kernel smoothing method, (8) directly estimates the ratio function via an

empirical risk minimization.

It is noted that we not only obtain the estimator r̂, but also an estimate of the divergence

Dϕ(Q∥P ) by the sample objective function with r̂.
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Regularity conditions for density ratio estimation

Condition 3

There exist constants B1 > 0 and β1 ≥ 1 such that the target function r0 ∈ Hβ1(X , B1).

Condition 4

Let the pseudo-dimension (see Pollard, 1990) of FN be Pdim(FN ), then (i)

Pdim(FN ) log(N) = o(N); and (ii) there exists a constant c2 > 0 such that for large enough n,

infr∈FN
∥r − r0∥∞ ≤ c2Pdim(FN )−

β1
d . (iii) There exists a positive constant M1 such that

∥r∥∞ ≤ M1 and ∥ℓ′′i,ϕ(r)∥∞ ≤ M1 for i = 1, 2 and for every r ∈ FN .

For linear sieve function classes, the pseud-dimension Pdim(FN ) equals to the number of

basis functions (Chen, 2007).

For deep neural networks (DNN) with the width W and depth L, the pseud-dimension

WL log(W/L) ≲ Pdim(Fn) ≲ WL log(W ).

The approximation error infr∈FN
∥r − r0∥∞ ≲ Pdim(FN )−

β
d is attainable for both sieve

functions and DNNs.

Han Yan TL with GEE July 12, 2024 12 / 29



Estimation error bound of r̂

To quantity the estimation performance, we define empirical L2 error of r̂ as

EN (r̂) = [N−1
N∑
i=1

{r̂(Xi)− r0(Xi)}2]1/2. (9)

Theorem 2

Under Conditions 1, 3, and 4, there exists a positive constant C1 such that with probability at

least 1− 2e−t, for N large enough and any t > 0,

EN (r̂) ≤ C1

(√
Pdim(FN ) log(N)

N
+ inf

r∈FN

∥r − r0∥∞ +

√
t

N

)
. (10)

Corollary 1

Under Conditions 1, 3, and 4, and taking Pdim(FN ) = O(N− d
2β1+d ), we have

EN (r̂) = Op

(
N− β1

2β1+d log
1
2 (N)

)
.

In practice, we can specify the optimal Pdim(FN ) with cross-validations.

The above estimation error attains the minimax lower bound for density ratio estimation.
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Multiple imputation

The next goal is to estimate the conditional mean function m(X,θ) = E{g(X, Y,θ)|X}.

Directly estimating m(X,θ) is not feasible, since it has to be estimated at infinitely

many θ.

Wang and Chen (2009) proposed to make κ independent imputations {Ỹν}κν=1 from a kernel

estimator

F̂ (y|X) =

n∑
i=1

K((Xi −X)/h)I(Yi ≤ y)

K((Xi −X)/h)
,

and then estimate m(X,θ) by

m̂κ(X,θ) = κ−1
κ∑

ν=1

g(X, Ỹν ,θ).

m̂κ(X,θ) is asymptotically equivalent to the Nadaraya–Watson estimator

m̂(X,θ) =
∫
g(X, Y,θ)dF̂ (y|X).

By sampling from the conditional distribution, multiple imputation bypasses estimating

m̂(X,θ) explicitly at every θ.
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Conditional Density Estimation

The key to the multiple imputations is the conditional density estimation.

Since the conditional density function is essentially a density ratio between p0(y,x) over

p0(x), it is natural to employ the ϕ-divergence based density estimation.

To ensure the support of the denominator density covers that of the numerator density, we

introduce an auxiliary variable Ỹ ∼ P̃Y and express the conditional density as

p0(y|x) =
p0(y,x)

p0(x)
=

p0(y,x)

p0(x)p̃0(y)
p̃0(y) =: r̃0(y,x)p̃0(y). (11)

Estimating p0(y|x) amounts to estimating the r̃0(y,x), the density ratio between PX,Y and

PX × P̃Y .
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Conditional Density Estimation

Let GN be a (d+ 1)-dimensional candidate function class that satisfies Condition 6 below,

then the density ratio r̃0(y,x) can be estimated via the following sample criterion

̂̃r(y,x) = argmin
p∈GN

{
1

n

n∑
i=1

ℓ1,ϕ{p(Ỹi,Xi)} −
1

n

n∑
i=1

ℓ2,ϕ{p(Yi,Xi)}

}
, (12)

where {Ỹi}ni=1 are independently sampled from P̃Y .

With ̂̃r(y,x), the conditional density is estimated by

p̂Y |X(y|x) = ̂̃r(y,x)p̃0(y). (13)

Using the conditional density estimator p̂Y |X(y|x), for any Xi ∈ {Xl}Nl=1, we generate a

sample {Ỹ ν
i }κν=1 independently from p̂Y |X(y|Xi). Then, the imputed moment function is

m̂κ(Xi,θ) =
1

κ

κ∑
ν=1

g(Xi, Ỹ
ν
i ,θ).
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Estimation error bound of m̂κ

Condition 5

(i) The support of P̃Y covers that of PY , and (ii) the density function of P̃Y is uniformly

bounded. (iii) There exist constants B2 > 0 and β2 ≥ 1 such that the true conditional density

function pY |X ∈ Hβ2(Y × X , B2). (iv) infy∈Y,x∈X pY |X(y|x) > 0.

Condition 6

The pseudo-dimension of GN satisfies (i) Pdim(GN ) log(N) = o(N), and (ii) there exists a

constant c3 > 0 such that for large enough n, infp∈GN
∥p− pY |X∥∞ ≤ c3Pdim(GN )−

β2
d+1 . (iii)

There exists a positive constant M2 such that ∥p∥∞ ≤ M2 and ∥ℓ′′i,ϕ(p)∥∞ ≤ M2 for i = 1, 2 for

every p ∈ GN .

Condition 7

There exists a positive constant σg > 0 such that E{exp(λ∥g(Z,θ∥2)|X = x} < exp(λσ2
g) for

all 0 ≤ λ ≤ σ−2
g for each θ ∈ Θ and x ∈ X .
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Estimation error bound of m̂κ

Define the empirical L2 error of m̂κ(X,θ) as

EN (m̂θ) =

r∑
j=1

[N−1
N∑
i=1

{m̂κj(Xi,θ)−m0j(Xi,θ)}2]1/2, (14)

where m̂κj and m0j are the j-th component of m̂κ and m0, respectively.

Theorem 3

Under Conditions 1, 5–7 and taking Pdim(GN ) = O(N− d+1
2β2+d+1 ) and κ ≳ N , for any θ ∈ Θ,

EN (m̂θ) = Op

(
N− β2

2β2+d+1 log
3
2 (N)

)
.
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Empirical likelihood inference

Using the orthogonal moment function Ψ(Wi,θ, η̂) with η̂(Xi,θ) = (r̂(Xi), m̂κ(Xi,θ)),

the EL estimator of θ0 is

θ̂ = argmax
θ∈Θ

LN (θ) (15)

where LN (θ) is the profile EL

LN (θ) = sup

{
N∏
i=1

pi

∣∣∣∣ pi ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

piΨ(Wi,θ, η̂(Xi,θ)) = 0

}
. (16)

Let Γ = E{∂Ψ(W ,θ0,η0)/∂θ}, Ω = E{Ψ(W ,θ0,η0)
⊗2}, and Σ = (ΓTΩ−1Γ)−1.

Theorem 4

Under Conditions 1 and 2, if the estimation errors satisfy

EN (r̂) + EN (m̂θ) = op(1) and EN (r̂)EN (m̂θ) = op(N
− 1

2 ), (17)

for every θ ∈ Θ, then we have
√
N(θ̂ − θ0)

d→ N (0,Σ) . (18)
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Empirical likelihood inference

Under Conditions 3–7 where r0 and pY |X have the smoothness of β1 and β2, respectively,

then (17) is attainable provided that

β1

2β1 + d
+

β2

2β2 + d+ 1
>

1

2
, (19)

The asymptotic variance of θ̂ reaches the semiparametric efficiency bound.

Let the log EL ratio be ℓN (θ) = − log{LN (θ)/N−N} and RN (θ0) = 2ℓN (θ0)− 2ℓN (θ̂).

Theorem 5

Under the same conditions as in Theorem 4, as N → ∞,

RN (θ0)
d→ χ2

r.

In the presence of nuisance functions, the log EL ratio no longer necessarily converges

weakly to a central χ2 distribution but may be a weighted sum of χ2 distributions, whose

critical values require Bootstrap to approximate (e.g., Chen et al., 2024).

We overcome such a situation and restore Wilks’ theorem due to the orthogonality of the

estimating function.
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Extension to growing dimensions

We consider the inference for θ with the presence of a high dimensional covariate.

Without structural assumptions, the convergence rates of r̂ and m̂κ attains the

corresponding minimax lower bounds.

There have been increasing studies indicating that high-dimensional data tend to be

supported on low-dimensional manifolds in many applications, such as image analysis and

natural language processing (Goodfellow et al., 2016).

Condition 8 (Approximate manifold support)

The covariate distributions PX and QX are concentrated on Mρ, a ρ-neighborhood of M ⊂ X ,

where M is a compact dM-dimensional Riemannian manifold (Lee, 2006) and

Mρ = {x ∈ X : inf{∥x− y∥2 : y ∈ M} ≤ ρ}, ρ ∈ (0, 1).

The dimension dM of the manifold M can be regarded as an intrinsic dimension. We allow the

nominal dimension d to diverge with N , while taking dM as a fixed constant.
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Circumventing the curse of dimensionality

Jiao et al. (2023) established that the fully connected DNNs can adaptively estimate a

smooth function with the manifold assumption, hence alleviating the curse of dimensionality.

We choose the function classes FN and GN as the DNNs with the ReLU activation function.

The widths for FN and GN are specified as W1 and W2, and the depths are specified as D1

and D2, respectively.

Let d̃M = O(dM log(d/δ)/δ2) be an integer such that dM ≤ d̃M < d, where δ ∈ (0, 1).

Theorem 6

Under Conditions 3–8, let the widths and depths of FN and GN be

Wi = 114(⌊βi⌋+ 1)2d̃
⌊βi⌋+1
M and Di = 21(⌊βi⌋+ 1)2N d̃M/2(d̃M+2βi)⌈log2(8N d̃M/2(d̃M+2βi))⌉,

for i = 1 and 2. Then, the estimation errors of r̂ and m̂θ satisfy

EN (r̂) = Op

(
d

1
2N

− β1
d̃M+2β1 log

1
2 (N)

)
and

EN (m̂θ) = Op

(
(d+ 1)

1
2N

− β2
(d̃M+1+2β2) log

3
2 (N)

)
, respectively.

(20)
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Circumventing the curse of dimensionality

Theorem 7

Under Conditions 1–8 and suppose that d = O(Nk) for some k ≥ 0 that satisfies

β1

2β1 + d̃M
+

β2

2β2 + d̃M + 1
>

2 + k

4
. (21)

If r3p2N−1 = o(1) and r3N2/α−1 = o(1), where α > 2 is the order of moment defined in

Condition 2, then as r, p,N → ∞, (i) for any un ∈ Rp with unit L2-norm,

√
NuT

nΣ
−1(θ̂ − θ0)

d→ N (0, 1); (22)

(ii) the EL ratio statistic RN (θ0) satisfies

(2r)−
1
2 {RN (θ0)− r} d→ N (0, 1). (23)

The above asymptotic distributions of θ̂ and RN (θ0) recover those in Chang et al. (2015) in the

absence of the nuisance functions.

Han Yan TL with GEE July 12, 2024 23 / 29



Case study: TL for O3 pollutions

We demonstrate that the proposed method is well-suited for the transfer learning of the inference

for the O3 levels.

Source domain: Beijing, Xian, and Jinan;

Target domain: Taiyuan

Study period: spring (March 1 to May 31) of 2018.

Response: O3 levels;

Covariates: meteorological variables and PM.

To investigate the performances of the TL, we assumed only the covariate variables of the target

domain Taiyuan were observable during their implementations, while the true O3 levels of the

target sample were used to evaluate the quality of the transfer learning.
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Imputations for O3 of the target domain

Performance of the multiple imputations for O3 of the target sample is demonstrated in Figure 1,

which verifies that the conditional density of the target sample was similar to that of the source,

but also shows that our multiple imputation method produced high-quality surrogates for the O3

on the target domain.

Figure: Illustration for the results of the multiple imputations for O3 the target sample. The upper and lower boundaries of the

blue region are the 2.5% and 97.5% empirical quantiles of the 200 imputations. The blue dotted line is the empirical mean of the

imputed values. The red line indicates the true O3 levels of the target sample.
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Inference for O3 of the target domain

We considered the estimation and inference for the mean and the α-quantiles (α = 25%, 50%,

and 75%) of the O3 of the target domain in Taiyuan. The methods include the multiple

imputation (MI), the density ratio weighting (DRW), and the proposed method (DRW-MI).

Figure: Estimation and 95% confidence intervals for the mean and three quantiles of the O3 of the target population obtained

from the target sample, the multiple imputations (MI), the density ratio weighting (DRW), and the density ratio weighting with

multiple imputations (DRW-MI), respectively. As a comparison baseline, the red dotted line indicates the estimated value of the

O3 with the target sample.

(a) Mean (b) 25%-quantile (c) 50%-quantile (d) 75%-quantile
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Summary

1 We construct a Neyman orthogonal estimating function for the covariate shift, which is more

robust against nuisance function estimation errors compared with existing methods.

2 We propose novel methods for nuisance function estimation that enable the use of flexible

nonparametric tools, including generic ML algorithms.

3 With a multiple imputation strategy, we overcome the challenge that one of the nuisances

m(x,θ) is parametric-dependent, namely it has to be estimated at infinitely many θ.

4 By employing the EL method, the proposed estimation is shown to be semi-parametric

efficient. The log EL ratio statistics admits Wilks’ theorem which greatly facilitates the

inference, while existing methods commonly require Bootstraps.

5 We also discuss a growing dimension scenario and adopt deep neural networks to mitigate

the curse of dimensionality.

Han Yan TL with GEE July 12, 2024 27 / 29



Thank You!
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