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Segmented regression models offer model flexibility and interpretability
as compared to the global parametric and the nonparametric models, and yet
are challenging in both estimation and inference. We consider a four-regime
segmented model for temporally dependent data with segmenting boundaries
depending on multivariate covariates with nondiminishing boundary effects.
A mixed integer quadratic programming algorithm is formulated to facilitate
the least square estimation of the regression and the boundary parameters.
The rates of convergence and the asymptotic distributions of the least square
estimators are obtained for the regression and the boundary coefficients, re-
spectively. We propose a smoothed regression bootstrap to facilitate inference
on the parameters and a model selection procedure to select the most suitable
model within the model class with at most four segments. Numerical simula-
tions and a case study on air pollution in Beijing are conducted to demonstrate
the proposed approach, which shows that the segmented models with three or
four regimes are suitable for the modeling of the meteorological effects on
the PM2.5 concentration.

1. Introduction. Regression analysis is a pivotal tool in modeling the relationship be-
tween dependent and independent variables and for prediction purposes. It is often conducted
via two types of models: the global parametric and local nonparametric models. The global
parametric models, such as the linear and polynomial regression models, have the advan-
tages of interpretability and computation simplicity. However, they often perform poorly due
to model misspecification as the underlying model may change over different parts of the
domain. To have better adaptability, nonparametric local models facilitated by the kernel
smoothing, the wavelets or splines, or the regression trees, have been introduced. The local
model’s complexities increase with the data’s dimension and the sample sizes, elevating the
risk of overfitting. The segmented model is a compromise between the global and the local
models as they are as interpretable as the global parametric models but have improved model
specifications.

Conventional threshold regression model (also called regime switching model) [32] was
the first generation of the segmented models. It assumes that the regression function is of
form E(Y |X,Z) = XTβ + XTδ1(Z > r), where Z is an observable scalar variable that can
be either a time index or a prespecified random variable. The threshold regression model has
a wide range of applications in empirical research, ranging from modeling effects of shocks
to economic systems over the business cycles [27], the dose-response models in biostatistics
[29] and in sociological research [5]. Statistical inference of the threshold regression model
with a univariate splitting variable has been well developed. [6, 15] and [16] established
asymptotic properties of the least squares estimators of the threshold regression models and
proposed tests on the threshold effect. As extensions, [12] and [23] introduced the multiple
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threshold regression model E(Y |X,Z) = XTβ + ∑K
k=1 XTδk1(Z > rk) with K splits and

K + 1 regimes (segments) and investigated the statistical inference problems.
A limitation of the existing threshold regression approach is that the splitting threshold

is largely determined by a univariate variable Z. [1] showed difficulties in finding the uni-
variate splitting variable in the analysis of macroeconomic effects of fiscal policies, and [19]
indicated that a univariate Z was not suitable to regulate the gene effects on disease risks
as the risk of developing a particular disease was due to multiple genes. Recently, [22] and
[35] extended the threshold regression to allow regime switching driven by a multivariate
random vector Z which is either observable or obtained via a factor model. Although these
works overcome the limitation of the univariate split variable, the setting of at most two
regimes can be restrictive for some applications. Machine learning methods, such as the con-
vex piece-wise linear fitting, can produce segmented linear regression with unlimited number
of regimes. However, as these methods were focused on the fitting performances, the under-
lying segmented models may not be identifiable with the suggested procedures. The finite
mixture models (FMM) proposed by [20] can also produce a subgroup linear model fitting
for heterogeneous data. However, the subgroups from the FMMs do not lead to parameterized
boundaries, and thus are less interpretable than the segmented linear models.

Our study is motivated from modelling the meteorological effects on PM2.5 concentration
in Beijing, where a global parametric model is too simple to offer good fitting performances
and a nonparametric model may be too local and do not provide sufficient atmospheric in-
terpretation. The air pollution in Beijing is typically governed by different meteorological
regimes, namely the removal process by favourable northerly wind which removes PM2.5 to
a low level, the calm regime between the northerly cleaning and the start of the transported
pollution driven under the southerly wind, the pollution growth regime under southerly wind
that transports polluted air from the south, and air stagnation regime after the pollution has
peaked, followed by the next removal process by the northerly wind. These motivate the four-
regime segmented regression model in this work. As the air quality and meteorological data
are time series, we consider temporally dependent data in the study.

Motivated by the air pollution problem, we consider four-regime regression models whose
splitting hypersplines are determined by linear combinations of two multivariate covariates
Z1 and Z2, where the splitting variables Z1 and Z2 can be any regressors, and the two split-
ting hyperplanes can intersect. These make the four regime-regression model less restrictive
than the multiple threshold regression model of [2] and [23] where the splitting variable Z is
univariate, and hence allows not necessarily parallel boundary hyperplanes. The four-regime
models include two and three-regime models as special cases, where the splitting boundaries
are either parallel or two adjacent regimes share the same regression coefficient and hence
can be merged.

The main contributions of the study are the following. We first establish the consistency
and the asymptotic distributions of the least squares estimators (LSEs) for both the boundary
and the regression coefficients under the four-regime regression model with temporally de-
pendent ρ-mixing observations, overcoming challenges posed by (i) the irregular objective
function, (ii) the fixed boundary edge effects rather than the diminishing effects commonly
treated in the literature and (iii) the unconventional form of the asymptotic distribution for
the boundary coefficient vector. It is found that the asymptotic distribution of LSEs for the
boundary coefficients is determined by the minimizers of a compound multivariate Poisson
process, whose jumps depend on the points near the true hyperplanes, and the boundary co-
efficient estimators are asymptotically independent of the regression coefficient estimators.

The generalization to the four regimes with two splitting boundaries brings considerable
computational challenges. Although the LSE of the conventional threshold regression can be
obtained with the grid search method, it is not practical in our setting as the boundaries are
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defined with multivariate variables. To overcome the challenges, we draw inspiration from
[3] and [22] and propose an algorithm based on the mixed integer quadratic programming
(MIQP), which is not only computationally efficient but also can be further accelerated by
adding an iterative component. It is shown the algorithm can facilitate efficient computation
of the LSEs with the rather nonregular form of the least squares objective function.

To permit statistical inference, especially in light of the rather unusual asymptotic distri-
bution for the boundary coefficient estimates, we develop a smoothed regression bootstrap
method and establish its consistency for approximating the distribution of the LSEs. Further-
more, the properties of the LSEs under degenerated segmented models with less than four
regimes are investigated. In order to find the right segmented models with up to four seg-
ments, we propose a model selection method with a backward elimination procedure that is
shown to be able to consistently choose the right number of regimes.

The paper is organized as follows. Section 2 introduces the four-regime regression model.
Section 3 presents the theoretical properties and the asymptotic distribution of the LSEs for
the regression and boundary parameters. In Section 4, we construct a mixed integer quadratic
programming (MIQP) algorithm to efficiently compute the LSEs. Section 5 considers infer-
ence problems for the four-regime regression model. Section 6 investigates the properties
of the proposed estimator under degenerated models with less than four regimes and pro-
poses a model selection method. Sections 7 and 8 report simulation and empirical results,
respectively. Section 9 concludes the paper with possible extensions. All technical proofs are
relegated to a Supplementary Material (SM, [33]).

2. Model setup. We first introduce some notations. We use 1(A) for the indicator func-
tion of an event A, ‖v‖ = (

∑d
i=1 v2

i )
1/2 for the L2-norm of vector v = (v1, . . . , vd)T and

N (v0; δ) = {v : ‖v − v0‖ ≤ δ} for the δ-neighborhood of v. Define v−1 as the sub-vector of v
excluding its first element, that is, v−1 = (v2, . . . , vd)T. We use |E| to denote the cardinality
of a set E. For any two sets E1 and E2, we denote E1 � E2 = (E1 \ E2) ∪ (E2 \ E1) as their
symmetric difference.

Let {W t = (Yt ,Xt ,Z1,t ,Z2,t )}Tt=1 be a sequence of observations, where Yt is the response
variable to covariates Xt ∈ R

p and two partitioning variables Zi,t ∈ R
di for i = 1 and 2,

which determine the boundaries of the segments or regimes. The variables Xt , Z1,t and Z2,t

can share common variables. The four-regime regression model is

(2.1) Yt =
4∑

k=1

XT
t βk01

{
Zt ∈ Rk(γ 0)

}+ εt ,

where Zt is the union of variables of Z1,t and Z2,t , {βk0}4
k=1 are the regression coeffi-

cients, {γ i0}2
j=1 are the boundary coefficients, εt is the residual satisfying E(εt |Xt ,Zt ) =

0 with a finite second moment, and Rk(γ 0) is the kth region split by the hyperplanes
{Hi0 : zT

i γ i0 = 0}2
i=1 for zi ∈ R

di . The overall parameter of interest is θ = (γ T,βT)T where
β = (βT

1 , . . . ,βT
4 )T and γ = (γ T

1 ,γ T
2 )T. We let θ0, β0 and γ 0 denote the respective true

parameters. For any observation W t , it is the signs of ZT
1,tγ 10 and ZT

2,tγ 20 that determine
which regression region it is located at. Denote by 11(U,V ) = 1(U > 0,V > 0),12(U,V ) =
1(U ≤ 0,V > 0),13(U,V ) = 1(U ≤ 0,V ≤ 0) and 14(U,V ) = 1(U > 0,V ≤ 0). Then we
can write Model (2.1) equivalently as

(2.2) Yt =
4∑

k=1

XT
t βk01k

(
ZT

1,tγ 10,Z
T
2,tγ 20

)+ εt ,

which explicitly reflects the role of γ 0 in Model (2.1).
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REMARK 2.1. Although the splitting hyperplanes appear linear, nonlinearity may be
accommodated by including nonlinear transformed variables in Zi(i = 1,2), for instance,
Z1 = (Z1,Z

2
1,1)T. The same extension can be conducted to X. It is also noted that in

the special case of Z1,t having the same distribution with Z2,t , the four segments under
γ 0 = (γ T

10,γ
T
20)

T are not distinguishable from that under γ̃ 0 = (γ T
20,γ

T
10)

T. Consequently,
θ0 is only identifiable up to some permutations. To avoid such situation, we assume that the
distributions of Z1,t and Z2,t are distinct.

REMARK 2.2. Since the signs of ZT
1 γ 10 and ZT

2γ 20 determine the regimes in Model
(2.1), γ 10 and γ 20 have to be normalized in order to be identifiable. For any candidate γ i of
γ i0, we normalize it by its first element γi,1, resulting in γ i =: (1, γ̃ i ) where γ̃ i is assumed
to take values in a compact set. As noted in [22], an alternative normalization is ‖γ i‖2 = 1.
In this study, we employ the former as it has one less parameter.

3. Estimation and asymptotic properties. In this section, we outline the least squares
(LS) estimation for θ0 of the four-regime regression model, and establish the convergence
rates of the LS estimators for the regression coefficient β̂ and the boundary coefficient γ̂
followed by providing their asymptotic distributions.

With the data sample {W t = (Yt ,Xt ,Z1,t ,Z2,t )}Tt=1, in view of E(εt |Xt ,Zt ) = 0, we de-
fine the following least squares criterion function

MT (θ) = 1

T

T∑
t=1

{
Yt −

4∑
k=1

XT
t βk1k

(
ZT

1,tγ 1,Z
T
2,tγ 2

)}2

=: 1

T

T∑
t=1

m(W t , θ),(3.1)

and the parameter space is � = �1 × �2 × B4, where �i is a compact set in R
di and the first

element of any γ ∈ �i is normalized as 1 for each i = 1,2, and B is a compact set in R
p .

Since MT (θ) is strictly convex in β and piece-wise constant in γ with at most T jumps, it has

a unique minimizer β̂ = (β̂
T
1 , . . . , β̂

T
4 )T for β , but a set of minimizers for γ , which is denoted

as Ĝ, such that a LSE θ̂ = (γ̂ T, β̂
T
)T satisfies

MT (̂θ) = inf
θ∈�

MT (θ) for any γ̂ ∈ Ĝ.(3.2)

It is noted that for any two γ̂ , γ̂ ′ ∈ Ĝ, the segmented regimes under the corresponding hyper-
planes must be the same, as otherwise the estimated regression coefficients will be distinct.
In addition, the set Ĝ is convex since for each i = 1 or 2, ZT

i,t γ̂ i > 0 and ZT
i,t γ̂

′
i > 0 imply

that ZT
i,t γ̃ i > 0 for all γ̃ i = αγ̂ i + (1 − α)γ̂ ′

i with α ∈ [0,1]. In the rest of this section, we

investigate the properties of the LS estimators θ̂ = (γ̂ T, β̂
T
)T with γ̂ ∈ Ĝ.

3.1. Identification and consistency. Here we discuss the identification of θ0 and estab-
lish the consistency of the LSEs θ̂ . Let W = (Y,X,Z1,Z2) follow the stationary distribu-
tion P0 of W t , and qi = ZT

i γ i0 for i = 1 and 2 to indicate whether Z = (Z1,Z2) is lo-
cated on the true hyperplane Hi0 : ZT

i γ i0 = 0 or not. Let S(i) be the set consisting of in-
dex pairs (k, h) if Rk(γ 0) and Rh(γ 0) are two adjacent regions split by Hi0. Specifically,
S(1) = {(1,2), (2,1)(3,4), (4,3)} and S(2) = {(1,4), (4,1), (2,3), (3,2)} according to the
provision in the lines above (2.2). Furthermore, let Z be the union vector of variables in Z1
and Z2.

ASSUMPTION 1 (Temporal dependence). (i) The time series {W t }t≥1 is strictly station-
ary and ρ-mixing with the mixing coefficient ρ(t) ≤ cαt for finite positive constants c and
α ∈ (0,1), where ρ(t) = sups,t≥1{sup Corr(f, g) : f ∈ 	s

1, g ∈ 	∞
s+t }, where 	

j
i denotes the

σ -filed generated by {W t : i ≤ t ≤ j}. (ii) E(εt |Ft−1) = 0, where Ft−1 is a filtration gener-
ated by {(Xi ,Z1i ,Z2i , εi−1) : i ≤ t}.
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ASSUMPTION 2 (Identification). For i ∈ {1,2} and k,h ∈ {1, . . . ,4}, (i) Z1 and Z2 are
not identically distributed. (ii) There exists a j ∈ {1, . . . , di} such that P(|qi | ≤ ε|Z−j,i) > 0
almost surely for Z−j,i and for any ε > 0, where Z−j,i is the vector after excluding Zi ’s
j th element; without loss of generality, assume j = 1. (iii) For any γ ∈ �1 × �2 and P{Z ∈
Rk(γ 0) ∩ Rh(γ )} > 0, the smallest eigenvalue of E{XXT|Z ∈ Rk(γ 0) ∩ Rh(γ )} ≥ λ0 for
some constant λ0 > 0. (iv) For (k, h) ∈ S(i), ‖βk0 − βh0‖ > c0 for some constant c0 > 0.

ASSUMPTION 3. (i) E(Y 4) < ∞, E(‖X‖4) < ∞ and maxi=1,2 E(‖Zi‖) < ∞. (ii) For
each i = 1 and 2, P(ZT

i γ 1 < 0 < ZT
i γ 2) ≤ c1‖γ 1 − γ 2‖ if γ 1,γ 2, ∈ N (γ i0; δ0), for some

constants δ0, c1 > 0.

Assumption 1(i) prescribes the strict stationarity and ρ-mixing condition on the time se-
ries, as used in the existing time-series threshold regression literature ([16] and [22]). It is
noted that such a decaying rate is only required in deriving the limiting distribution of γ̂ ,
which can be relaxed to the polynomial decay for Theorem 3.1 and Theorem 3.2. Assump-
tion 1(ii) imposes a martingale difference condition for the noises, which is standard for time
series regressions.

Assumption 2 is for the identification of θ0. Specifically, without Assumption 2(i),
(γ T

1 ,γ T
2 )T are not distinguishable from (γ T

2 ,γ T
1 )T as discussed in Remark 2.1. It is noted

that the methods and theories in the rest of the papers are applicable without such a con-
dition, while a permutation for γ 1 and γ 2 is possibly required. Section F of the SM [33]
provides sufficient conditions for Assumption 2(ii), which ensures there are positive prob-
ability of observations located around the true splitting hyperplanes. Discrete variables can
be accommodated in Zi , as long as it includes at least one continuous variable, say Z1,i .
Otherwise, if all the splitting variables are discretely distributed, then E{m(W , θ)} will be
piece-wise constant and γ 0 will not be identifiable. Assumption 2(iii) guarantees that the
splittings by candidate hyperplanes do not lead to degenerated covariance matrices, which is
needed for the identification of β0. Assumption 2(iv) means that adjacent regimes have dis-
tinguishable regression coefficients so that the splitting effect of each hyperplane is strictly
bounded away 0, which is similar to the fixed threshold effect models treated in [6] and [35].
Assumption 3(i) is a moment condition, and (ii) means P(ZT

i γ < 0) is continuous at γ i0,
implying that E{m(W ; θ)} is continuous at the true parameter θ0.

The identification of θ0 is formally ensured in the following proposition.

PROPOSITION 3.1. Under Assumptions 1 and 2, E{m(W , θ)} > E{m(W , θ0)} for any
θ ∈ � and θ �= θ0.

The proposition ensures that despite the multiple LS estimates γ̂ , the underlying γ 0 is

unique. The following theorem shows that any LSE estimators θ̂ = (γ̂ T, β̂
T
)T defined in

(3.2) are consistent to θ . It is worth noting that though there exist infinitely many solutions γ̂
which are collected in the convex set Ĝ, the consistency of each γ̂ can be guaranteed, which
implies that the solution set Ĝ is a local neighborhood of γ 0 with a shrinking radius.

THEOREM 3.1. Under Assumptions 1–3, let θ̂ = (γ̂ T, β̂
T
)T for any γ̂ ∈ Ĝ„ then θ̂

p−→ θ0
as T → ∞.

With the estimated splitting hyperplanes, each datum can be classified into one of the
four estimated regimes {Rk(γ̂ )}4

k=1. Besides the estimation accuracy of θ0, the classification
accuracy is also an important criterion. It is shown next that the estimated regime Rk(γ̂ ) is
consistent to the true regime Rk(γ 0) for each k = 1, . . . ,4.
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COROLLARY 3.1. Under the conditions of Theorem 3.1, P{Z ∈ Rk(γ 0) � Rk(γ̂ )} → 0
as T → ∞ for all k ∈ {1, . . . ,4}.

3.2. Convergence rates and asymptotic distributions. We first study the convergence
rates of the LSEs β̂ and γ̂ , which require the following conditions.

ASSUMPTION 4. (i) For i = 1 and 2, there exist constants δ1, c2 > 0 such that if ε ∈
(0, δ1) then P(|qi | < ε|Z−1,i ) ≥ c2ε almost surely. (ii) For i = 1 and 2, there exists a neigh-
borhood Ni = N (γ i0; δ2) of γ i0 for some δ2 > 0, such that infγ∈Ni

E(‖XTδkh,0‖|ZT
i γ =

0) > 0 almost surely for each (k, h) ∈ S(i), where δkh,0 = βk0 − βh0. (iii) P(ZT
1γ 1 < 0 <

ZT
1 γ 2,Z

T
2 γ 3 < 0 < ZT

2γ 4) ≤ c3‖γ 1 −γ 2‖‖γ 3 −γ 4‖ for some constant c3 > 0 if γ 1,γ 2 ∈ N1

and γ 3,γ 4 ∈N2. (iv) supγ∈Ni
E(‖X‖8|ZT

i γ = 0) < ∞ and supγ∈Ni
E(ε8|ZT

i γ = 0) < ∞ al-
most surely.

Assumption 4(i) strengthens Assumption 2(i) and is satisfied when the conditional density
fqi |Z−1,i

(q) is continuous and bounded away from 0 at q = 0 almost surely. Assumption 4(ii)
ensures there is a jump of the regression surface at the splitting hyperplane, which is similar
to Assumption D3 of [35] and Assumption 4.(iii) of [22]. Assumption 4(iii) controls the
probability of data near the cross regions of the two hyperplanes, whose sufficient condition
is presented in Section F of the SM [33]. Assumption 4(iv) requires that ‖X‖ and ε has a
finite moment of the order 8 around the hyperplanes.

The next theorem establishes the rates of convergence of β̂ and γ̂ , followed by the conver-
gence rate of the proportions of misclassifications.

THEOREM 3.2. Under Assumptions 1–4, ‖β̂ − β0‖ = Op(1/
√

T ) and ‖γ̂ − γ 0‖ =
Op(1/T ) for any γ̂ ∈ Ĝ.

COROLLARY 3.2. Under the conditions of Theorem 3.2, P{Z ∈ Rk(γ 0) � Rk(γ̂ )} =
O(1/T ) for all k ∈ {1, . . . ,4}.

The theorem, whose proof is in Section B of the SM [33], shows that the regression coef-
ficient estimator β̂ converges to β0 at the standard

√
T -rate, while the boundary parameter

estimator γ̂ , despite having multiple solutions, converges to γ 0 at the faster T -rate. The su-
per convergence rate attained by γ̂ is quite typical for the boundary parameter estimators, for
instance, the maximum likelihood estimator for the boundary parameter of uniform distribu-
tions, the LS estimator of models with a jump in the conditional density [8], the threshold
regression model [6] and the two-regime regression model with a fixed threshold effect [35].
An intuition for the fast convergence of γ̂ is that the discontinuity of the regression planes is
highly informative for the inference of γ . It is noted that in the shrinking threshold effect set-
ting β10 − β20 = cT −α with c �= 0 and 0 < α < 1

2 adopted by [16] and [22], the convergence
rate of γ̂ is slower at T 1−2α .

To present the asymptotic distributions of β̂ and γ̂ , we define for each k ∈ {1, . . . ,4},
Bk = E

{
XXT1(Z ∈ Rk(γ 0)

}
and 
k = B−1

k E
{
XXTε21(Z ∈ Rk(γ 0)

}
B−1

k .

Let qi,t = ZT
i,tγ i0 and qi = ZT

i γi0 for i = 1 and 2. Denote by s
(k)
i = (−1)1(qi≤0, ∀Z∈Rk(γ 0)) be

the sign of qi for Z = (ZT
1 ,ZT

2 ) ∈ Rk(γ 0). For instance, s
(1)
1 = s

(1)
2 = 1 and s

(2)
1 = −1, s

(2)
2 =

1. If Rk(γ 0) and Rh(γ 0) are adjacent such that (k, h) ∈ S(i) for i = 1 or 2, let

(3.3) ξ
(k,h)
t = (

δT
kh,0XtX

T
t δkh,0 + 2XT

t δkh,0εt

)
1
{
Zt ∈ Rk(γ 0) ∪ Rh(γ 0)

}
,
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where δkh,0 = βk0 −βh0. Let Z−1,i,t be the random vector of Zi,t excluding its first element.
Suppose (qi,Z−1,i , ξ

(k,h)) follows the stationary distribution of (qi,t ,Z−1,i,t , ξ
(k,h)
t ). We de-

note Fqi |Z−1,i
(q|Z−1,i ) and Fξ(k,h)|qi ,Z−1,i

(ξ |qi,Z−1,i) as the conditional distributions of qi

on Z−1,i and ξ (k,h) on (qi,Z−1,i ), respectively, and the corresponding conditional densities
are fqi |Z−1,i

(q|Z−1,i) and fξ(k,h)|qi ,Z−1,i
(ξ |qi,Z−1,i), respectively. Let Z−1,i be the support

of the distribution of Z−1,i . The following is needed for the weak convergence of γ̂ .

ASSUMPTION 5. (i) For i = 1 and 2, there exist constants δ3, c4 > 0 such that
P(|qi,t | ≤ δ3, |qi,t+j | ≤ δ3) ≤ c4{P(|qi,t | ≤ δ3)}2 uniformly for t ≥ 1 and j ≥ 1; (ii)
For each z−1,i ∈ Z−1,i , the conditional density fqi |Z−1,i

(q|z−1,i) is continuous at q = 0
and c4 ≤ fqi |Z−1,i

(0|z−1,i) ≤ c5 for some constants c4, c5 > 0; (iii) For each ξ ∈ R and
z−1,i ∈ Z−1,i , the conditional density fξ(k,h)|qi ,Z−1,i

(ξ |qi,z−1,i ) is continuous at qi = 0 and

fξ(k,h)|qi ,Z−1,i
(ξ |0,z−1,i ) ≤ c6 for a constant c6 > 0; (iv) Z−1,i is a compact subset of Rdi−1.

Assumption 5(i) is a nonclustering condition that states the probability of two points are
both located near the splitting hyperplane Hi0 is of a smaller order compared to that of just
one point is located near Hi0, which curbs the clustering of extreme events and is similar to
Condition C.4 of [7]. Assumption 5(ii) and (iii) are on the conditional densities fqi |Z−1,i

and
fξ(k,h)|qi ,Z−j,i

, respectively, which are used to characterize behaviors of the points near Hi0.
The compactness of Z−1,i is required by the limiting theory of point processes ([28] and [8]),
which may be attained by trimming Z−1,i,t or empirical quantile transformation.

The asymptotic distribution of γ̂ needs the following stochastic process

D(v) = ∑
i=1,2

∑
k,h∈S(i)

∞∑
ℓ=1

ξ
(k,h)
i,ℓ 1

{
J

(k,h)
i,ℓ + (

Z
(k,h)
i,ℓ

)T
v−1,i ≤ 0 < J

(k,h)
i,ℓ

}
,(3.4)

for v = (vT
1 ,vT

2 )T ∈ R
d1+d2 , where {(ξ (k,h)

i,ℓ ,Z
(k,h)
i,ℓ )}∞ℓ=1 are independent copies of (ξ̄

(k,h)
i ,

Z−1,i ) with ξ̄
(k,h)
i ∼ Fξ(k,h)|qi ,Z−1,i

(ξ |0,Z−1,i), and J
(k,h)
i,ℓ = J (k,h)

i,ℓ /fqi |Z−1,i
(0|Z(k,h)

i,ℓ ) with

J (k,h)
i,ℓ = s

(k)
i

∑ℓ
n=1 E

(k,h)
i,n and {E (k,h)

i,n }∞n=1 are independent unit exponential variables which

are independent of {(ξ (k,h)
i,ℓ ,Z

(k,h)
i,ℓ )}∞ℓ=1. Moreover, {(ξ (k,h)

i,ℓ ,Z
(k,h)
i,ℓ , J

(k,h)
i,ℓ )}∞ℓ=1 are mutually

independent with respect to i = 1,2 and (k, h) ∈ S(i).
Let GD = {vm : D(vm) ≤ D(v) if v �= vm} be the set of minimizers for D(v). Since D(v)

is a piece-wise constant random function, there are infinitely many elements in GD . Such a
phenomenon also appears in the threshold regression, where the minimizers of the process,
that is a special case of (3.4), are attained in an interval, whose left endpoint is commonly used
as a representative, which is not applicable to our case since GD is a polyhedron. As treated in
[35], we use the centroid of GD as the representative. For any set A of d-dimensional vectors,
the centroid of A is C(A) = ∫

v∈A v dv/
∫
v∈A dv, which can be geometrically interpreted

as the center of mass of the set A. Let γ c
D = C(GD) and γ̂ c = C(Ĝ), where Ĝ is the set

for LS estimators for γ . The former will define the limit of γ̂ c as shown in Theorem 3.3.
Numerically, γ̂ c can be approximated by the average of N elements of Ĝ for a sufficiently
large N . The following theorem establishes the asymptotic distributions of

√
T (β̂k − βk0)

and T (γ̂ c − γ 0).

THEOREM 3.3 (Asymptotic distribution). Under Assumptions 1–5, we have (i)
√

T (β̂k −
βk0)

d−→ N(0,
k) for k = 1, . . . ,4 and T (γ̂ c − γ 0)
d−→ γ c

D ; (ii) {√T (β̂k − βk0)}4
k=1 and

{T (γ̂ c
i − γ i0)}2

i=1 are asymptotically independent.
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REMARK 3.1. The limiting process D(v) is derived by the asymptotics of the point pro-
cess induced by {(ξ (k,h)

t ,Z−1,i,t , T qi,t )}Tt=1. The process D(v) can be regarded as a multi-

variate compound Poisson process, whose jump sizes are {ξ (k,h)
i,ℓ }∞ℓ=1 and jump locations are

determined by the counting measure induced by {(J (k,h)
i,ℓ ,Z

(k,h)
i,ℓ )}∞ℓ=1. Intuitively, this is be-

cause D(v) largely relies on those points lying in a local neighborhood of the true splitting
hyperplanes, whose |qi,t | are on the order of O(T −1), which are rare events with their oc-
currences asymptotically governed by a Poisson process. In the case of univariate threshold
model where Zi = (Z,1)T and γ i0 = (1, γi0)

T so that Z−1,i = 1 and qi = Z − γi0, it can be
seen that D(v) coincides with the compound Poisson process established in [6]. Theorem 3.3
also extends the result of [35] to accommodate the temporal-dependent data and multiple
splitting hyperplanes. The analysis is technically more involved than the existing literature of
the fixed effect threshold regression due to the challenge of the multivariate boundaries and
the dependence of the observations. To tackle these challenges, we exploit large sample the-
ory for the extreme values and point processes ([25] and [28]), as well as the epi-convergence
in distribution [21], which is more general than the classic uniform convergence in distribu-
tion and allows for more general discontinuity, as outlined in the SM [33]. The techniques
used in the proof may be used to analyze the asymptotic of other extreme type statistics that
can be expressed as some functional of a multivariate point process with temporal-dependent
sequences.

REMARK 3.2. The asymptotic independence of T (γ̂ c
1 − γ 10) and T (γ̂ c

2 − γ 20) was
shown for the univaraite multiple-regime threshold model [23]. Theorem 3.3 reveals that
this can be extended to multiple splitting hyperplanes, provided that the probability of
data locating at the crossing region of the two hyperplanes is negligible as reflected
in Assumption 4(iii). As shown in the proof, the empirical point process induced by
{(ξ (k,h)

t ,Z−1,i,t , T qi,t ), i = 1,2, (k, h) ∈ S(i)}Tt=1 is asymptotic Poisson, whose arrivals can
be divided into different segments, depending on whether they belong to the same pair
(k, h) ∈ S(i) or not, where S(i) is the set of index pairs of adjacent regions split by the ith
hyperplane. Hence, the limiting Poisson process can be thinned into several asymptotic inde-
pendent child processes, which further implies the asymptotic independence of T (γ̂ c

1 − γ 10)

and T (γ̂ c
2 − γ 20). As a building block, we established a thinning theorem for Poisson pro-

cesses for the α-mixing sequences, which might be useful in its own right. The asymptotic
independence of

√
T (β̂k − βk0) and T (γ̂ c − γ 0) can be explained by the fact that the for-

mer is asymptotically a sum of terms with each term being asymptotically negligible. Hence,√
T (β̂k − βk0) should not depend on the stochastically bounded number of points near the

hyperplanes that determine the distribution of T (γ̂ c − γ 0) [18].
It is also noted that the temporal dependence structure of the observed time series does not

show up in the asymptotic distributions of T (γ̂ c − γ 0) and
√

T (β̂k − βk0). That regarding√
T (β̂k − βk0) is due to the martingale difference condition E(εt |Ft−1) = 0 as far as the

asymptotic variance of β̂k is concerned, which is commonly the case in other related studies
[6, 23]. That on the T (γ̂ c −γ 0) is because the asymptotic distribution of γ̂ c is determined by
the empirical point process induced by the points near the underlying splitting hyperplanes,
which satisfies Meyer’s condition [25] for rare events of mixing sequences and ensures the
limiting process being Poisson as in the case of independent observations.

4. Computation. The computation of the LSE for θ̂ by minimizing (3.2) is quite chal-
lenging due to the nonregularity of m(W t , θ) that makes the most commonly used opti-
mization algorithms unworkable. We overcome the difficulty via the mixed integer quadratic
programming (MIQP), which optimizes a quadratic objective function with linear constraints
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over points in polyhedral sets whose components can be both integer and continuous vari-
ables; see [4] and [3] for details. For the two-regime regression, [22] expressed the LS prob-
lem as an MIQP problem to improve the computation efficiency. The inclusion of the second
boundary in the current study brings challenges. If formulated directly using the approach of
[22], it would make the objective function quartic rather than quadratic. We will formulate a
MIQP for the two-boundary problem to facilitate the computation.

To make the notations compact, we define Ik,t = 1{Zt ∈ Rk(γ )} for any candidate γ =
(γ T

1 ,γ T
2 )T and k = 1, . . . ,4. Let Xt,i be the ith element of Xt and βk,i be the ith element of

βk . It can be noted that the irregularity of MT (θ) in (3.2) is brought by the indicators {Ik,t }.
If we define ℓk,i,t = Ik,tβk,i for i = 1, . . . , p, then MT (θ) can be expressed as

(4.1) VT (�) = 1

T

T∑
t=1

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓk,i,t

)2

,

which is quadratic with respect to � = {ℓk,i,t : k = 1, . . . ,4; i = 1, . . . , p; t = 1, . . . , T }.
Since the constraints of an MIQP have to be linear, while ℓk,i,t = Ik,tβk,i is nonlinear, it is

necessary to introduce linear constraints to ensure that {ℓk,i,t } have a one-to-one correspon-
dence to the unknown parameters {βk}4

k=1 and{γ j }2
j=1. As βk belongs to a compact set, there

exist constants Li and Ui such that Li ≤ βk,i ≤ Ui . By imposing constraints

(4.2) Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi and Li(1 − Ik,t ) ≤ βk,i − ℓk,i,t ≤ Ui(1 − Ik,t ),

it can be verified that (4.2) holds if and only if ℓk,i,t = Ik,tβk,i under the condition that Ik,t ∈
{0,1}. That ℓk,i,t = Ik,tβk,i implies (4.2) is obvious. To appreciate the other way, note that if
Ik,t = 1, ℓk,i,t = βk,i ; otherwise if Ik,t = 0, ℓk,i,t = 0. In either cases, ℓk,i,t = Ik,tβk,i .

The next goal is to relate Ik,t = 1{Zt ∈ Rk(γ )} to the boundary coefficients {γ j }2
j=1. Let

gj,t = 1(ZT
j,tγ j > 0). We first express gj,t by linear constraints in γ j , so as to link Ik,t with

gj,t via linear inequalities. Let Mj,t = maxγ∈�j
|ZT

j,tγ | which can be readily computed via
linear programming. Then

(4.3) (gj,t − 1)(Mj,t + ε) < ZT
j,tγ j ≤ gj,tMj,t

hold by the definition of gj,t , where ε > 0 is a small predetermined constant. On the other
hand, let gj,t be a binary variable that satisfies (4.3). Then, gj,t = 1 and the first inequality
implies that ZT

j,tγ k > 0; and gj,t = 0 and the second inequality implies that ZT
j,tγ ≤ 0. Thus,

(4.3) are equivalent to gj,t = 1(ZT
j,tγ j > 0).

Finally, we construct constraints which are linear in {gj,t }2
j=1 and equivalent to Ik,t =

1{Zt ∈ Rk(γ )}. Since each regime Rk(γ ) can be written as Rk(γ ) = {(z1,z2) : s
(k)
j zT

j γ j >

0, j = 1,2}, where s
(k)
j ∈ {−1,1} is the sign of zT

j γ j for the points belonging in Rk(γ ), we

can write Ik,t =∏2
j=1 1(s

(k)
j ZT

j,tγ j > 0), which can be linked to {gj,t }2
j=1 via

Ik,t =
2∏

j=1

1
(
s
(k)
j ZT

j,tγ j > 0
)=

2∏
j=1

{
s
(k)
j gj,t + (

1 − s
(k)
j

)
/2
}
,(4.4)

where the first equality is by the definition of Ik,t , and the second equality can be directly
verified. Since the right-hand side of (4.4) is a product of two factors taking values in {0,1},
it can be shown that (4.4) is equivalent to the following linear constraints

Ik,t ≥
2∑

j=1

{
s
(k)
j gj,t + (

1 − s
(k)
j

)
/2
}− 1 and Ik,t ≤ s

(k)
j gj,t + (

1 − s
(k)
j

)
/2.(4.5)

for j = 1 and 2 and k ∈ {1, . . . ,4}.
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In summary, via the linear constraints (4.2), (4.3) and (4.5), we transform the original LS
problem (2.2) to a MIQP problem formulated as following.

Let g = {gj,t : j = 1,2, t = 1, . . . , T }, I = {Ik,t : k = 1, . . . ,4, t = 1, . . . , T } and � =
{ℓk,i,t : k = 1, . . . ,4, i = 1, . . . , p, t = 1, . . . , T }. Solve the following problem:

min
β,γ ,g,I,�

1

T

T∑
t=1

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓk,i,t

)2

(4.6)

subject to
(4.7) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

βk ∈ B,γ j ∈ �j , gj,t ∈ {0,1}, Ik,t ∈ {0,1},Li ≤ βk,i ≤ Ui,

(gj,t − 1)(Mj,t + ε) < ZT
j,tγ j ≤ gj,tMj,t , Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi,

Li(1 − Ik,t ) ≤ βk,i − ℓk,i,t ≤ Ui(1 − Ik,t ),

Ik,t ≤ s
(k)
j gj,t + (

1 − s
(k)
j

)
/2, Ik,t ≥

2∑
j=1

{
s
(k)
j gj,t + (

1 − s
(k)
j

)
/2
}− 1,

for k = 1, . . . ,4, j = 1,2, i = 1, . . . , p and t = 1, . . . , T .
The above optimization problem can be solved quite efficiently with modern mixed integer

optimization softwares such as GUROBI and CPLEX. The next theorem, whose proof is in
Section C of the SM [33], shows that the formulated MIQP is equivalent to the original LS
problem.

THEOREM 4.1. For any small ε > 0 in (4.7), let θ̃ = (γ̃ T, β̃
T
)T be a solution of the MIQP

defined with (4.6) and (4.7), then MT (̂θ) =MT (θ̃) where θ̂ is a solution in (3.2).

Theorem 4.1 indicates that any γ̃ satisfying (4.6) and (4.7) is an element of Ĝ, the solution
set for the LS estimators for γ 0. Since for any {gj,t } ∈ {0,1}2T , there are infinitely many
γ j (j = 1,2) that satisfy the constraint in the second line of (4.7), we can output multiple
solutions {γ̃ n = (γ̃ T

n1, γ̃
T
n2)

T}Nn=1 of the above MIQP for a sufficiently large N , and use their
average as an approximation for the centroid γ̂ c of the set Ĝ as advocated in [35]. We display
a scatter plot of the multiple solutions from a simulation experiment reported in Section H.2
of the SM [33], which appeared to be uniformly distributed. However, it requires further
investigation to understand the detailed mechanism regarding how the multiple elements of
Ĝ are produced by the MIQP solver.

REMARK 4.1. It is noted that the above algorithm requires prior specifications of
(Li,Ui), the upper and lower bound for βk,i . In practice, we can first standardize {Xt }Tt=1 and
specify a sufficient large parameter interval (Li,Ui) to ensure it contains the true value. Alter-
natively, we can employ the data-driven method proposed in [3] that estimates max{|Li |, |Ui |}
via the convex quadratic optimization. Besides the proposed MIQP algorithm, the MCMC-
based method as used in [35] for the two-regime regression can also be adapted to minimize
the LS criterion MT (θ), which avoids the specification of the parameter bounds but requires
more intensive computations since it is a simulation-based method. A comprehensive com-
parison between the MIQP and MCMC algorithms for segmented regressions would require
more work and we leave it to further study.

REMARK 4.2. As indicated in [22], the MIQP may be slow when the dimension of Xt

and the sample size T are large. As an alternative, we present a block coordinate descent
(BCD) algorithm for the four-regime model in Section C of the SM [33], which minimizes
the LS criterion with respect to β and γ iteratively. At each step, the update for γ given β
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is via a mixed integer linear programming (MILP), which is easier to solve than the MIQP.
The update for β given γ is by linear regression in each candidate regime. Hence, the BCD is
computationally more efficient than the MIQP that jointly optimizes (γ ,β). However, there
is no guarantee that the BCD converges to the global optimal solution without a consistent
initialization. Simulations to compare the two algorithms are presented in the SM [33], which
show that the BCD with proper initial values can produce close solutions to that of the MIQP
with significantly reduced running time.

5. Smoothed regression bootstrap. We now consider the statistical inference problems
for β0 and γ 0. The inference for β0 is quite standard due to the asymptotic normality of β̂ ,
while that for the boundary coefficient γ 0 is much more challenging since the asymptotic
distribution of T (γ̂ c − γ 0) has a much-involved form and is hard to simulate.

A natural idea for the inference of γ 0 is to employ the bootstrap. However, as shown in
[31] and [34], neither the nonparametric, the residual, nor the wild bootstrap is consistent
in approximating the distribution of estimator for the change points in change point models
or the threshold in threshold regression models. The failure of these bootstrap methods can
be explained as follows. As pointed out in Remark 3.2, only the data around the boundary
hyperplanes is informative for the inference on γ 0. Thus, the bootstrap sampling distribution
P̂T , when conditional on the original data, must approximate the true distribution P0 in the
neighborhood of the true hyperplanes. For the identification of γ 0, P0 must have a positive
probability on any local region around the underlying boundaries, as reflected in Assump-
tion 2(ii). However, conditional on the original data, the bootstrap distribution P̂T is discrete
under either the nonparametric, the residual, or the wild bootstrap, which fails to mirror P0.
As a remedy, we present a smoothed regression bootstrap method and prove its theoretical
validity.

Suppose that Y is generated according to the following segmented linear regression model
with heteroscedastic error

(5.1) Y =
4∑

k=1

XTβ01
{
Z ∈ Rk(γ 0)

}+ σ0(X,Z)e,

where e has a continuous distribution and is independent of (X,Z) with E(e) = 0 and
E(e2) = 1, and σ 2

0 (X,Z) is a conditional variance function representing possible het-
eroskedasticity. Model (5.1) is a refinement of Model (2.1) with more detailed structure on
the residuals. If it is believed that the error is homogeneous within each region Rk(γ 0) so that
ε = σk1{Z ∈ Rk(γ 0)}e for some σk > 0, as assumed in [34], then the nonparametric estima-
tion for σ0(x,z) is not required and σk can be estimated with the sample standard deviation
of the fitted residuals in the kth region.

Let F0(x,z) be the distribution function of (X,Z), whose density function is f0(x,z). We
estimate F0(x,z) and σ0(x,z) nonparametrically with the kernel smoothing. Specifically, let
K1(·) and K2(·) be a p-dimensional and a (d1 + d2)-dimensional kernel functions, respec-
tively. Let Gi(u) = ∫ u

−∞ Ki(u) du for i = 1,2. The kernel smoothing estimator for F0(x,z)

is given by

F̃0(x,z) = 1

T

T∑
t=1

G1

(
Xt − x

h1

)
G2

(
Zt − z

h2

)
,

where h1 and h2 are smoothing bandwidths.
With the LS estimator (γ̂ , β̂), the estimated residuals are ε̂t = Yt − ∑4

k=1 XTβ̂1{Zt ∈
Rk(γ̂ )}. The conditional variance function σ 2

0 (x,z) can be estimated via the local linear
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approach proposed by [10]. For any given (x,z), the local linear estimator σ̃ 2(x,z) = α̂,
which is defined by

(α̂, η̂) = arg min
(α,η)

T∑
t=1

{̂
ε2
t − α − (

(Xt − x)T, (Zt − z)T)η}2
K1

(
Xt − x

b1

)
K2

(
Zt − z

b2

)
,

where η ∈ R
p+d1+d2 , and b1 and b2 are smoothing bandwidths. Let êt = ε̂t /σ̃ (Xt ,Zt ) and

ẽt = êt − ēT , where ēT =∑T
t=1 êt /T . Denote Ĝ(e) as the empirical distribution of {ẽt }Tt=1.

We need the following conditions on the underlying stationary distribution and its den-
sity functions, the kernel functions, and the smoothing bandwidths to facilitate the Bootstrap
procedure.

ASSUMPTION 6. (i) The stationary distribution F0 of (Xt ,Zt ) has a compact support
and is absolute continuous with density f0(x,z) which is bounded and infx,z f0(x,z) > 0.

(ii) The conditional variance function σ 2
0 (x,z) is bounded and infx,z σ 2

0 (x,z) > 0.
(iii) The kernels K1(·) and K2(·) are symmetric density functions which are Lipshitz con-

tinuous and have bounded supports. The smoothing bandwidths satisfy hi, bi → 0 for i = 1
and 2, and T (logT )−1h

p
1 h

d1+d2
2 → ∞ and T (logT )−1b

p
1 b

d1+d2
2 → ∞ as T → ∞.

Under Assumptions 1 and 6, it can be shown that supx,z ‖F̃0(x,z) − F0(x,z)‖ p−→ 0, and

supx,z ‖σ̃ 2(x,z) − σ 2
0 (x,z)‖ p−→ 0, following the uniform convergence results of kernel den-

sity and regression estimators for mixing sequences, say [14]. In addition, the above assump-
tions also ensure the uniform convergence of the density f̃0 of the kernel estimator F̃0 to the
true density function f0, which is required in establishing the consistency of the smoothed
regression bootstrap. If (X,Z) is of high dimensions we can also employ machine learning
methods that are adaptive to high dimensional features, such as the deep neural networks, to
estimate f0(x,z) and σ0(x,z), as long as their uniform convergence can be guaranteed.

The bootstrap procedure to approximate the distributions of {T (γ̂ c − γ 0),
√

T (β̂ − β0)}
is as follows.

Step 1: First, generate {(X∗
t ,Z

∗
t )}Tt=1 independently from F̃ (x,z) and {e∗

t }Tt=1 inde-
pendently from Ĝ(e), respectively. Then, generate Y ∗

t = ∑4
k=1(X

∗
t )

Tβ̂k1{Z∗
t ∈ Rk(γ̂

c)} +
σ̃ (X∗

t ,Z
∗
t )e

∗
t to obtain bootstrap resample {(Y ∗

t ,X∗
t ,Z

∗
t )}Tt=1.

Step 2: Compute the LSEs based on {(Y ∗
t ,X∗

t ,Z
∗
t )}Tt=1, where β̂

∗
is the LSE for β0 and

{γ̂ ∗
i }Ni=1 are the LSEs for γ 0 for a sufficiently large N . Let γ̂ ∗c =∑N

i=1 γ̂ ∗
i /N .

Step 3: Repeat the above two steps B times for a large positive integer B to obtain {γ̂ ∗c
b }Bb=1

and {β̂∗
b}Bb=1, and use the empirical distribution of {T (γ̂ ∗c

b − γ̂ c),
√

T (β̂
∗
b − β̂)}Bb=1 as an

estimate of the distribution of {T (γ̂ c − γ 0),
√

T (β̂ − β0)}.
As in the original LS problem, the LSEs for γ 0 based on each bootstrap resample are

attained on a convex set Ĝ∗. Therefore, in Step 2 we approximate the centroid of Ĝ∗ by the
average of N elements in Ĝ∗. Denote the distribution of {T (γ̂ c − γ 0),

√
T (β̂ − β0)} as LT

and the empirical distribution of {T (γ̂ ∗c
b − γ̂ c),

√
T (β̂

∗
b − β̂)}Bb=1 as LT ,B . The validity of the

smoothed regression bootstrap is established in the following theorem.

THEOREM 5.1. Suppose that Assumptions 1–6 hold. Then ρ(LT ,B,LT )
p−→ 0 as B,T →

∞, for any metric ρ that metrizes weak convergence of distributions.

The proof of the theorem is in Section D of the SM [33] by first establishing sufficient
conditions for a consistent bootstrap scheme for approximating LT , followed by showing
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that the smoothed regression bootstrap satisfies these conditions. With the above result, con-
fidence regions and hypothesis testings about γ 0 and β0 can be readily conducted via the
empirical distribution of the smoothed bootstrap estimates LT ,B .

REMARK 5.1. We exploit the parametric regression model in the bootstrap resampling,
under which the mixing-dependent structure of the observed data does not show up in the
asymptotic distributions as shown in Theorem 3.3. As discussed in [17], if one has a para-
metric model that reduces the data generating process to independence sampling, then the
parametric bootstrap has properties that are essentially the same as they are when the obser-
vations are independently distributed. Therefore, in the resampling procedure, the temporal
dependence of the original data is not necessary to be explicitly taken into account.

REMARK 5.2. In addition to the smoothed regression bootstrap, there are two alternative
methods which may be applicable for inference of γ 0. One is the block subsampling method
proposed by [26], which was adopted by [13] in the threshold autoregressive models. Another
is the nonparametric posterior confident interval approach based on the Markov Chain Monte
Carlo (MCMC) adopted by [35] for inference on the two-regime regression model. Whether
these methods work for the current four-regime segmented regression with fixed boundary
effects and dependent data are interesting future research topics.

6. Degenerated models and model selection. Model (2.1) assumes that there are four
segments divided by two boundary hyperplanes where the adjacent regimes have distinct re-
gression coefficients. However, it is possible that the underlying regimes are degenerated with
less than four regimes. In this section, we show that the LS estimator (3.2) attains desirable
convergence properties even in the degenerated cases, and propose a model selection method
for choosing the underlying model.

Given the data sample {(Yt ,Xt ,Z1,t ,Z2,t )}Tt=1 for Z1,t ∈ Z1 and Z2,t ∈ Z2, there are five
possible degenerated models as follows in addition to the four regime model (2.1).

(a.1). Three-regime model with nonintersected splitting hyperplanes:

(6.1) Yt =
3∑

k=1

XT
t βk01

{
Zt ∈ Rk(γ 0)

}+ εt ,

where the two hyperplanes H1 and H2 have no intersection on Z1 × Z2. Without loss of
generality, we suppose that zT

1 γ 10 ≤ zT
2γ 20 for all (z1,z2) ∈ (Z1 × Z2). Then, R1(γ 0) =

{z : zT
1γ 10 > 0},R2(γ 0) = {z : zT

1γ 10 ≤ 0,zT
2 γ 20 > 0} and R3(γ 0) = {z : zT

2 γ 20 ≤ 0}. The
conventional multi-threshold models (e.g., [12] and [23]) correspond to this case.

(a.2). Three-regime regression model with intersected splitting hyperplanes:

(6.2) Yt =
3∑

k=1

XT
t βk01(Zt ∈ Rk(γ 0) + εt ,

where R1(γ 0) = {z : zT
i γ j,0 > 0,zT

j γ j,0 > 0},R2(γ 0) = {z : zT
i γ j,0 > 0,zT

j γ j,0 ≤ 0} and

R3(γ 0) = {z : zT
j γ j,0 ≤ 0} for i �= j ∈ {1,2}. Geometrically, one side of the hyperplane Hj :

zT
j γ j,0 = 0 is split by Hi : zT

i γ i,0 = 0 that does not extend to the other side of Hj .
(b.1). Two-regime regression model with one splitting hyperplane:

(6.3) Yt =
2∑

k=1

XT
t βk01

{
Zt ∈ Rk(γ 0)

}+ εt ,

where (z,γ 0) is either (z1,γ 10) or (z2,γ 20) and R1(γ 0) = {z : zTγ 0 > 0} and R2(γ 0) = {z :
zTγ 0 ≤ 0}, which are the same as the two-regime models of [22] and [35].
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FIG. 1. Illustrations of segmented models with no more than four regimes. The signs of (zT
1 γ 1,zT

2 γ 2) for each
region are indicated below the region names.

(b.2). Two-regime regression model with two splitting hyperplanes:

(6.4) Yt =
2∑

k=1

XT
t βk01

{
Zt ∈ Rk(γ 0)

}+ εt ,

where R1(γ 0) = {z : zT
1γ 10 > 0,zT

2γ 20 > 0} and R2{γ 0} =Z1 ×Z2 \ R1(γ 0).
(c). Global linear model:

(6.5) Yt = XT
t β0 + εt ,

Figure 1 illustrates the segmented models with no more than four regimes, which can be
expressed in a unified form

(6.6) Yt =
K0∑
k=1

XT
t βk01

{
Zt ∈ Rk(γ 0)

}+ εt ,

where the number of regimes 1 ≤ K0 < 4 and the number of splitting hyperplanes L0 ≤ 2. In
particular, Rk(γ 0) = Z1 × Z2 for the global linear model (K0 = 1), the splitting coefficient
γ 0 = γ 10 or γ 20 when L0 = 1, and γ 0 = (γ T

10,γ
T
20)

T when L0 = 2.
Let B̂ = {β̂k}4

k=1 and Ĝ = {γ̂ j }2
j=1 be the LS estimators for the regression and the bound-

ary coefficients, respectively, obtained under the four-regime regression model (3.2). To mea-
sure the estimation accuracy of the four-regime algorithms for less than four regime models,
we need a distance of the true parameters of possibly degenerated models to the set of the LS
estimates under the four-regime model. To this end, we define a distance between a vector v
and a set of vectors V̂ = {v̂j }Jj=1 as d(v, V̂) = minj ‖v − v̂j‖2. The following theorem estab-
lishes the convergence of the LS estimators to the underlying parameters by showing that the
distance of the true parameters of the degenerated models to the set of the LSEs under the
four-regime model convergences to zero.

THEOREM 6.1. For Model (6.6) with K0 regimes and L0 splitting hyperplanes, where
1 ≤ K0 < 4 and 0 ≤ L0 ≤ 2, under Assumption 1 and Assumptions S2-S4 in the SM [33],
which adapt Assumptions 3–4 to the degenerate model settings, then for each βk0 with
1 ≤ k ≤ K0, d(βk0, B̂) = Op(1/

√
T ). If L0 = 1, then d(γ 0, Ĝ) = Op(1/T ). If L0 = 2,

then d(γ i0, Ĝ) = Op(1/T ) for each i = 1 and 2. Moreover, for any of the degenerated
models with K0 < 4 regimes, there exists an index set Qk ⊂ {1, . . . ,4} such that P{Z ∈
Rk(γ 0) �⋃

i∈Qk
Ri(γ̂ )} = O(1/T ) for each 1 ≤ k ≤ K0.
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The theorem shows that under each of the degenerated models, the estimated boundaries
and the regression coefficients obtained under (3.2) of the four-regime model are consistent
to the true parameters in the sense of the diminishing distance between the true parameters
and the sets of the estimates. A remaining issue is to identify the true number of regimes so
that more precise segmented regression can be conducted. In the following, we introduce a
model selection procedure to attain the purpose.

The last part of Theorem 6.1 suggests that each true regime Rk(γ 0) can either be consis-
tently estimated by some Ri(γ̂ ) if |Qk| = 1, which occurs when Rk(γ 0) has two boundaries,
such as the first two regimes in Figure 1(C), or there are some redundant estimated segments
in Rk(γ 0), which happens if Rk(γ 0) has a single boundary while an unnecessary estimated
hyperplane splits through Rk(γ 0). If the latter case is true, then |Qk| > 1 and there exist two
adjacent estimated regimes Ri(γ̂ ) and Rh(γ̂ ) with i, h ∈ Qk , whose corresponding β̂i and
β̂h both consistently estimate βk0. Under such a case, merging Ri(γ̂ ) with Rh(γ̂ ) as one re-
gression regime will asymptotically not lead to an increased sum of squared residuals (SSR).
Otherwise, if the regression models on Ri(γ̂ ) and Rh(γ̂ ) are distinct, then merging these two
regimes will deteriorate the fitting performance. Such a property hints that the true model
with K0 < 4 can be selected via a backward elimination procedure.

Starting from the estimated four-regime model, we try recursively finding the best pairs
of adjacent regimes to be merged, under a criterion that the merging leads to the minimal
increase in the fitting errors, as defined in (6.7) below. Via conducting the optimal regime
merging recursively, we obtain four candidate regression models with the number of regimes
from K = 4 to K = 1. In the second step, the optimal number of regimes K is selected
based on a criterion function (6.8) that combines a goodness-of-fit measure and a penalty for
over-segmentation.

For the initial model with four regimes, define

ST (4) =
T∑

t=1

[
Yt −

K∑
k=1

XT
t β̂

(4)

k 1
{
Zt ∈ R̂

(4)
k

}]2

to be the sum of square residual (SSR) of the estimated four-regime model. For K = 4,3,2,
recursively define

D
(K)
T (i, h)

= min
β∈B

T∑
t=1

[
Yt − XT

t β1
{
Zt ∈ R̂

(K)
i ∪ R̂

(K)
h

}]2 −
T∑

t=1

[
Yt − ∑

k=i,h

XT
t β̂

(K)

k 1
{
Zt ∈ R̂

(K)
k

}]2

to be the increment in the SSR after merging R̂
(K)
i and R̂

(K)
h . Let AK be the pair of indices

for the adjacent segments of {R̂(K)
k }. We merge the segments R̂

(K)

î
and R̂

(K)

ĥ
if

(̂i, ĥ) = arg min
(i,h)∈AK

D
(K)
T (i, h),(6.7)

followed by labeling the merged region and the remaining regions as {R̂(K−1)
k }K−1

k=1 , and we

denote the estimated regression coefficients to these K − 1 regimes by {β̂(K−1)

k }K−1
k=1 . Then,

define the SSR of the (K − 1)-segment submodel as

ST (K − 1) = ST (K) + D
(K)
T (̂i, ĥ).

After obtaining the ST (K) for K = 2,3,4, we select the number of segments K̂ as

K̂ = arg min
1≤K≤4

{
log

(
ST (K)

T

)
+ λT

T
K

}
(6.8)



SEGMENTED REGRESSION MODEL 2683

and output the estimated regimes and regression coefficients accordingly. The following the-
orem shows that the above selection algorithm has the model selection consistency.

THEOREM 6.2. Under the assumptions of Theorem 6.1, and λT → ∞, λT /T → 0 as

T → ∞, then K̂ selected in (6.8) satisfies P(K̂ = K0) → 1 as T → ∞. In addition, P{R̂(K̂)
k �

Rk(γ 0)} = O(1/T ) and ‖β̂(K̂)

k − βk0‖ = Op(1/
√

T ) for any k ∈ {1, . . . ,K0}.
Theorem 6.2 indicates that with the probability approaching 1, the selected number of

regimes K̂ coincides with the true number K0 and as a by-product, the corresponding esti-
mated regimes and the regression coefficients converge to their underlying counterparts. If
the regularization parameter is chosen as λT = logT , the (6.8) corresponds to the Bayesian
information criterion (BIC) [30].

REMARK 6.1. There are two existing approaches for carrying out the model selection for
the segmented models. One is by conducting pairwise linearity tests. Specifically, for each
adjacent regimes Ri(γ̂ ) and Rh(γ̂ ) under the four-regime model, one can test for the hy-
pothesis H0 : βi0 = βh0 via two-regime linearity tests, such as the score-type test of [35].
However, implementing such tests are computationally demanding, as the test statistics have
to be formulated via supremum or averaging over γ ∈ �, as γ is not identifiable under the null
hypothesis of no splitting within Ri(γ̂ ) ∪ Rh(γ̂ ), which is known as the Davis problem [9].
The other is the forward sequential fitting procedure for model selection of multi-threshold
regression models [12], which requires optimization for the splitting (boundary) coefficients
in each step. Compared with these two methods, the proposed model selection method has
two advantages. One is that it has quite readily computation without having to do the boot-
strap for the model selection; and the other is that we only need to estimate the splitting
coefficients for the initial four-segment model once and for all, as the submodels with fewer
regimes are selected via (6.7) without the need to conduct nonconvex optimization as in the
forward sequential fitting procedure.

7. Simulation study. In this section, we present results from simulation experiments
designed to investigate the performance of the proposed estimation and inference procedures
for the four-regime and the degenerated less than four regime models.

7.1. Estimation under the four-regime model. We first conducted simulations under the
four-regime model (2.1) such that the sample was generated according to

(7.1) Yt =
4∑

k=1

XT
t βk01k

(
ZT

1,tγ 10,Z
T
2,tγ 20

)+ εt , t = 1, . . . , T ,

where Xt = (X̃
T
t ,1)T with X̃t = (X1,t ,X2,t ,X3,t )

T and Zj,t = (Z̃
T
j,t ,1)T with Z̃j,t =

(Zj,1,t ,Zj,2,t )
T for j = 1,2. The noises were generated as εt = σ(Xt ,Zt )et with σ(Xt ,

Zt ) = 1 + 0.1X2
1,t + 0.1Z2

1,1,t and {et }Tt=1 being generated independently from the standard
normal distribution and independent of {Xt ,Zt }Tt=1. The regression coefficients of the four
regimes were β10 = (1,1,1,1)T,β20 = (−3,−2,−1,0),β30 = (0,1,3,−1)T and β40 =
(2,−1,0,2)T, and the two boundary coefficients γ 10 = (1,−1,0)T and γ 20 = (1,1,0)T,
respectively.

We considered three settings for Xt and Zj,t : independence, dependence with auto-

regressive (AR) and moving average (MA) models, respectively. Let V t = (X̃
T
t , Z̃

T
1,t , Z̃

T
2,t )

T.

For the independence setting, we generated {V t }Tt=1
i.i.d.∼ N(0,
V ), where 
V =
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TABLE 1
Empirical average estimation errors ‖γ 0 − γ̂ ‖2 and ‖β0 − β̂‖2 (multiplied by 10), under the independence

(IND), auto-regressive (AR) and moving average (MA) settings with different dependence level ψ for
{Xt ,Z1,t ,Z2,t }Tt=1. The numbers inside the parentheses are the standard errors of the simulated averages

IND AR MA

ψ = 0 ψ = 0.2 ψ = 0.4 ψ = 0.8 ψ = 0.2 ψ = 0.4 ψ = 0.8

T γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂

200 0.94 6.68 0.92 6.66 0.88 6.43 0.88 5.9 0.93 6.63 0.9 6.49 0.85 6.14
(0.59) (1.7) (0.58) (1.68) (0.6) (1.56) (0.61) (2.24) (0.56) (1.63) (0.54) (1.66) (0.52) (1.8)

400 0.45 4.55 0.45 4.55 0.45 4.4 0.43 3.98 0.44 4.46 0.43 4.38 0.43 4.06
(0.3) (1.1) (0.3) (1.11) (0.27) (1.17) (0.29) (1.53) (0.28) (1) (0.33) (1.07) (0.28) (1.21)

800 0.25 3.11 0.24 3.09 0.22 2.97 0.22 2.64 0.23 3.11 0.25 3.03 0.22 2.81
(0.16) (0.66) (0.15) (0.66) (0.14) (0.66) (0.14) (0.96) (0.14) (0.66) (0.16) (0.65) (0.15) (0.72)

1600 0.11 2.2 0.11 2.18 0.12 2.11 0.11 1.88 0.11 2.17 0.11 2.11 0.11 1.97
(0.07) (0.46) (0.07) (0.47) (0.08) (0.5) (0.07) (0.77) (0.07) (0.45) (0.07) (0.47) (0.07) (0.54)

(σij )i,j=1,...,7 with σii = 1 and σij = 0.1 if i �= j . For the AR dependence, V t = ψV t−1 +ut ,

where {ut }Tt=1
i.i.d.∼ N(0,
V ) and the dependence level ψ ∈ {0.2,0.4,0.8}. For the MA

scenario, we generated V t = ψut−1 + ut , where {ut }Tt=1
i.i.d.∼ N(0,
V ) and ψ took val-

ues in {0.2,0.4,0.8}, respectively. The simulation experimented with four sample sizes:
{200,400,800,1600}, and the experiments were repeated 500 times for each sample size
and dependence setting.

Table 1 reports the average L2 estimation errors under the three temporal settings (inde-
pendence, AR(1) and MA(1)) and different dependence levels (ψ = 0.2,0.4,0.8) for β and
γ , respectively. It suggests that under the three dependence settings the estimation errors of γ̂
and β̂ both decreased as the sample size T was increased, indicating the convergence of the
estimation in both the regression and the splitting boundary coefficients. The table also sug-
gests that the magnitudes of the estimation errors were comparable across the three temporal
settings with different dependence levels, which support the result of Theorem 3.3 that the
temporal dependence in {Xt ,Z1,t ,Z2,t }Tt does not have leading order effects on the asymp-
totic variance of β̂ . Moreover, Table 1 shows that the simulated averages of ‖γ 0 − γ̂ ‖2 were
approximately halved once the sample size was doubled, while the reduction in ‖β0 − β̂‖2
was much slower, confirming the faster convergence rates of γ̂ .

7.2. Estimation under models with less than four regimes. We next investigated the
performances of the proposed estimation based on the four-regime model when the
underlying model was degenerated with less than four regimes. The data generating
process for {Xt ,Z1,t ,Z2,t , εt }Tt=1 was largely the independence setting used in Sec-
tion 7.1. For the three-regime model (6.1) with nonintersected splitting hyperplanes, we let
γ 10 = (1,0,−1)T,γ 20 = (1,0,1)T and β10 = (1,1,1,1)T,β20 = (−3,−2,−1,0)T,β30 =
(0,1,3,−1)T. For the three-regime model (6.2) with intersected splitting hyperplanes, we
let γ 10 = (1,1,0)T,γ 20 = (1,−1,0)T while H10 does not extend to the positive side of
H20, and {βk0}3

k=1 were the same as above. The parameters for the two-regime model
(6.3) with one splitting hyperplane were set as γ 0 = (1,1,0)T, β10 = (1,1,1,1)T and
β20 = (−3,−2,−1,0)T. For the two-regime model (6.4) with two splitting hyperplanes, we
set the splitting coefficients as the same as the four-regime model (7.1), and R1(γ 0) = {z :
zT

1γ 10 > 0,zT
2 γ 20 > 0} and R2(γ 0) = Z1 × Z2 \ R1(γ 0), where the regression coefficients

are β10 = (1,1,1,1)T and β20 = (−3,−2,−1,0)T, respectively. Finally, the regression co-
efficients for the global linear model (6.5) were β0 = (1,1,1,1)T.
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The simulation results are reported in Tables S2 of Section H.2 in the SM [33]. They show
that for all the models with less than four regimes, the empirical averages of

∑
i d(γ i0, Ĝ)

and
∑

k d(βk0, B̂) all diminished to 0 at similar rates as those in Table 1, where Ĝ and B̂ are
the sets of estimators obtained under the four-regime model for the splitting and regression
coefficients, respectively. These confirmed the results in Theorem 6.1. In addition, to evaluate
the cost of not knowing the number of the underlying regimes, we also estimated γ 0 and β0
in the oracle setting, in which the true model forms were known. It was found that estima-
tion errors of γ 0 under the four-regime model fitting were about the same as that obtained
under the oracle models, which was because the four-regime estimator can efficiently use the
data points located near the underlying boundaries as the oracle estimators did. Moreover, as
shown in Figures S2 and S3 of the SM [33], if the estimated four-regime model produced
redundant segments within a true regime, then the discrepancy between the estimated regres-
sion coefficients on these redundant segments converged to 0, which verified the idea used in
the optimal merger strategy for the backward elimination procedure in the model selection.

7.3. Model selection. We then conducted simulation experiments to examine the perfor-
mance of the proposed model selection method in Section 6. We considered the true number
of regimes ranging from K0 = 4 to K0 = 1, where the parameters for the model with K0 = 4
were the same as Model (7.1) and those for K0 = 3 and K0 = 2 were Model (6.1) and Model
(6.3), respectively, in Section 7.2. More simulation results for Model (6.2) and Model (6.5)
(K0 = 1) were reported in Table S3 of the SM.

Table 2 reports three model selection performance measures for the simulation, namely (i)
the estimated number of regimes K̂ , (ii) the discrepancy between the true regimes and the
estimated regimes measured by

D(R, R̂) =
K0∑
k=1

min
1≤h≤K̂

{
T −1

T∑
t=1

∣∣1{Zt ∈ Rk(γ 0)
}− 1

{
Zt ∈ Rh(γ̂ )

}∣∣},

where R = {Rk(γ )}K0
k=1 and R̂ = {Rk(γ̂ )}K̂k=1, and (iii) the L2 estimation error of regression

coefficients, quantified by D(B, B̂) = ∑K0
k=1 min1≤h≤K̂ ‖βk0 − β̂h‖. To evaluate the impact

of the penalty parameter λT in (6.8), we presented the results under three different choices:
λT = 5,5 log(T ) and 5 log2(T ).

Table 2 shows that, for the constant penalty λT = 5, although the estimated number of
regimes K̂ was consistent under K0 = 4, it tended to select overly segmented models when
K0 < 4. Both λT = 5 log(T ) and 5 log2(T ) led to consistent estimated K̂ for all models,
which confirmed the assertion in Theorem 6.2 that λT satisfying λT → ∞ and λT /T → 0
leads to model selection consistency. It was also noted that while the last two penalties were
consistent, for smaller sample sizes, the selection performance with λT = 5 log(T ) was su-
perior to that with λT = 5 log2(T ) when K0 ≥ 3, while the latter penalty had better selection
accuracy when K ≤ 2. Such a phenomenon may be understood since a larger penalty tends
to encourage under-segmentations. In addition, both D(R, R̂) and D(B, B̂) diminished to 0
when K̂ was correctly selected, indicating that the model specification procedure was able
to not only consistently identify K0, but also led to consistent estimates of regimes and the
corresponding regression coefficients, as shown in Theorem 6.2.

7.4. Smoothed regression bootstrap. We now report simulation results designed to eval-
uate the empirical performance of the smoothed regression bootstrap.

The data generating model for {Yt ,Xt ,Z1,t ,Z2,t }Tt=1 was the same as the independent set-

ting in Section 7.1, but (X̃
T
t , Z̃

T
1,t , Z̃

T
2,t )

T was truncated over a 7-dimensional region [−2,2]7
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TABLE 2
Empirical model selection results under 500 replications. The performances were evaluated by the average

estimated number of regimes K̂ , the discrepancy between the true regimes and the estimated regimes D(R, R̂)

and the L2 estimation error of regression coefficients D(B, B̂). The penalty parameter λT was chosen in
{5,5 log(T ),5 log2(T )}. The numbers inside the parentheses are the standard errors of the simulated averages

λT = 5 λT = 5 log(T ) λT = 5 log2(T )

Model T K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂)

Model (2.1) (K0 = 4) 200 4.00 0.03 0.61 3.99 0.03 0.62 2.78 0.87 2.24
(0.00) (0.02) (0.12) (0.08) (0.04) (0.16) (0.87) (0.91) (1.05)

400 4.00 0.01 0.41 4.00 0.01 0.41 3.92 0.05 0.53
(0.00) (0.01) (0.08) (0.00) (0.01) (0.08) (0.27) (0.13) (0.43)

800 4.00 0.01 0.29 4.00 0.01 0.29 4.00 0.01 0.29
(0.00) (0.00) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600 4.00 0.00 0.20 4.00 0.00 0.20 4.00 0.00 0.20
(0.00) (0.00) (0.04) (0.00) (0.00) (0.04) (0.00) (0.00) (0.04)

Model (6.1) (K0 = 3) 200 3.44 0.12 0.50 3.00 0.02 0.48 2.85 0.13 0.75
(0.50) (0.11) (0.11) (0.00) (0.02) (0.11) (0.38) (0.30) (0.69)

400 3.39 0.10 0.34 3.00 0.01 0.33 3.00 0.01 0.33
(0.49) (0.11) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800 3.33 0.08 0.23 3.00 0.01 0.22 3.00 0.01 0.22
(0.47) (0.11) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600 3.33 0.08 0.16 3.00 0.00 0.16 3.00 0.00 0.16
(0.47) (0.11) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.3) (K0 = 2) 200 3.38 0.14 0.35 2.03 0.01 0.30 2.00 0.01 0.30
(0.59) (0.11) (0.10) (0.17) (0.01) (0.08) (0.00) (0.01) (0.08)

400 3.54 0.13 0.24 2.01 0.01 0.20 2.00 0.01 0.20
(0.51) (0.11) (0.07) (0.08) (0.01) (0.05) (0.00) (0.00) (0.05)

800 3.53 0.12 0.16 2.00 0.00 0.14 2.00 0.00 0.14
(0.53) (0.11) (0.04) (0.06) (0.00) (0.04) (0.00) (0.00) (0.04)

1600 3.50 0.13 0.12 2.00 0.00 0.10 2.00 0.00 0.10
(0.55) (0.12) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

to ensure the distribution of the covariates was compactly supported as required in Assump-
tion 6. The product Gaussian kernel was used as the kernel function with the smoothing
bandwidths hi and bi(i = 1,2) for F̃0(x,z) and σ̃ 2(x,z) were chosen by the cross-validation
method [10]. As a comparison, we also conducted the wild bootstrap procedure [24], which
is a commonly used bootstrap method in regression. Different from the smoothed regression
bootstrap, the wild bootstrap does not resample the covariates and the resampled residuals
ε∗
t = d∗

t ε̂t , where ε̂t was the estimated residual and d∗
t followed a two-point distribution.

Both the smoothed regression bootstrap and the wild bootstrap were based on B = 500 re-
samples for each simulation run. As there are infinitely many solutions for γ̂ from the MIQP
algorithm, for each bootstrap resample, we outputted N = 100 solutions for the LSE of γ 0
and used their average as γ̂ ∗c

b .
To evaluate the quality of the two bootstrap schemes, we constructed 95% confidence in-

tervals (CIs) for γ̃ 0 = (γ ′−1,10,γ
′−1,20)

T = (−1,0,1,0)T projected on five directions {di}5
i=1

where di = ei for i = 1, . . . ,4 and d5 =∑4
i=1 d i/2, and ei = (ei1, . . . , ei4)

T with eii = 1 and
eij = 0 if j �= i. Table 3 reports the coverage probabilities and widths of the nominal 95% CIs
for γ̃ T

0d i based on the smoothed regression bootstrap and the wild bootstrap, respectively. It
is shown that the smoothed regression bootstrap had satisfactory coverage as its empirical
coverage levels were quite close to the nominal 95% level under large sample sizes for all the
five projection directions. This verified the consistency of the proposed bootstrap procedure
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TABLE 3
Empirical coverage probabilities and widths (×100 in parentheses) of the 95% confidence intervals for five
projected parameters {γ̃ Tdi}5

i=1 obtained with the smoothed regression bootstrap (Smooth) and the wild
bootstrap (Wild) based on 500 resamples

d1 d2 d3 d4 d5

T Smooth Wild Smooth Wild Smooth Wild Smooth Wild Smooth Wild

200 0.92 0.87 0.97 0.87 0.93 0.90 0.93 0.83 0.96 0.86
(6.76) (3.57) (6.91) (3.91) (5.78) (4.02) (6.20) (3.44) (6.86) (3.56)

400 0.95 0.86 0.94 0.83 0.97 0.86 0.94 0.88 0.97 0.85
(3.31) (1.69) (3.57) (1.89) (2.56) (1.94) (3.37) (1.73) (3.69) (1.75)

800 0.93 0.85 0.96 0.87 0.94 0.88 0.96 0.88 0.96 0.87
(1.70) (0.83) (1.76) (0.99) (1.68) (1.00) (1.72) (0.86) (1.80) (0.76)

1600 0.95 0.83 0.94 0.88 0.95 0.90 0.96 0.84 0.94 0.85
(0.81) (0.40) (0.86) (0.51) (0.89) (0.53) (0.85) (0.41) (0.79) (0.42)

in Theorem 5.1. On the other hand, the wild bootstrap had substantial under-coverage, and
its coverage was not improved with the increases of the sample sizes. The comparison be-
tween the two bootstrap schemes reveals that for the inference of γ 0, it is crucial to conduct
resampling from a smoothed distribution, as advocated in Section 5.

8. Case study. Air quality is naturally affected by meteorological regimes as the lat-
ter defines the atmospheric dispersion conditions. We demonstrate here that the four-regime
regression model is well suited for PM2.5 modeling in Beijing.

We considered hourly PM2.5 data from Wanshouxigong site in central Beijing with the
meteorological data from the nearest weather observation site being used. The study period
was from December 1, 2018 to November 30, 2019, which encompassed four seasons. The
meteorological data included the air temperature (TEMP), dew point temperature (DEWP),
surface air pressure (PRES), the cumulative wind speed (IWS) at a direction and wind di-
rection (WD). Cumulative rainfall (RAIN) was included in summer, however not in the other
three seasons due to a lack of it. The categorical wind direction (WD) took five values: North-
westerly (NW), Northeasterly (NE), Southwesterly (SW), Southeasterly (SE) and calm and
variable (CV). We also used the boundary layer height (BLH), which defines the vertical dis-
persion property, from European Centre for Medium-Range Weather Forecasts (ECMWF).

To investigate the in-sample and out-of-sample performances, the data were divided to the
training and testing sets, where the testing sets consisted of the data from the 11-th to the
20-th days of a month and the training sets included the rest of the data in the month. PM2.5
was regressed on covariates TEMP, DEWP, PRES, log(BLH), IWS, WD as well as the PM2.5
at the previous hour (Lag PM2.5). For the wind direction, NW, NE, SW and SE were set as
dummy covariates with the CV as the baseline.

Along with the proposed four-regime model (4-REG), the global linear regression (GLR),
the two-regime model (2-REG) [22] and [35], the linear regression tree (LRT) [37] and the
multivariate adaptive regression splines (MARS) [11] were also considered. For 2-REG and
4-REG, the splitting boundaries were determined by TEMP, DEWP, log(BLH), IWS and
the four wind directions NE, NW, SE and SW with the coefficients standardized so that the
intercept term being 1.

Figure 2 summarizes the in-sample and out-of-sample MSEs of these models in each sea-
son. Within the training sets, LRT or MARS achieved the lowest MSE among the five models
with the average rank being 1.75 and 2, respectively. Here, rank 1 indicates the best perfor-
mance. The average rank of the 4-REG in the training groups was 2.5, while those of the



2688 H. YAN AND S. X. CHEN

FIG. 2. Mean squared errors (MSE) for PM2.5 on the training (red) and testing (green) sets for each season of
five models, including global linear regression (GLR), two-regime model (2-REG), four-regime model (4-REG),
linear regression tree (LRT) and multivariate adaptive regression splines (MARS), with model ranks (in increasing
order of the MSEs) marked on top of the bars.

2-REG and GLR ranked the lowest in all seasons. However, LRT and MARS had the highest
prediction MSEs on the testing sets, even worse than the benchmark GLR for all seasons,
indicating they were severely over-fitted. The segmented linear models, 4-REG and 2-REG,
were the best two in terms of out-of-sample performances, with the 4-REG achieving the
lowest predictive errors consistently in all seasons.

The estimated 4-regimes models in the spring, summer and fall seasons all had three
regimes, as the fourth estimated regime had zero sample size in the three seasons. A fur-
ther examination suggested that the two estimated boundaries had no intersections over the
sample regions, which corresponded to Model (6.1) and reflected the fact that the proposed
LS criterion based on the four-regime model may be able to produce a three-regime model
if the latter offers better fit. The winter had four estimated regimes. The estimated regression
coefficients and their 95% confidence intervals are given in Figure S4 of the SM [33].

Table 4 reports the estimated coefficients of the two splitting boundaries for each season as
well as the cosine of the dihedral angle (denoted as φ) between the two boundary hyperplanes.
It can be seen that cosφ for the first three seasons were relatively larger than that in winter,
which explains why the boundary hyperplanes of these three seasons were nonintersected.
Table 4 indicates that the DEWP and the wind-related variables were the most influential in
determining the slopes of the estimated boundaries due to their absolute coefficient values as
the γ was normalized. This reveals an attraction of the proposed regime-splitting mechanism

TABLE 4
Estimated coefficients of the splitting boundaries and cos of the angle φ between the two boundaries. The

coefficients were normalized such that the coefficients of the intercept terms were 1. All the covariates were
standardized such that their sample means were 0 and standard deviations were 1 in each season

Season γ TEMP DEWP IWS log(BLH) NE NW SE SW cosφ

Spring 1 1.3 −2.5 −0.0 −0.4 0.9 0.3 0.1 0.0 0.78
2 0.4 −0.5 −0.1 −0.1 0.6 0.6 0.1 0.3

Summer 1 1.0 5.5 −12.9 −0.0 −12.7 −15.0 −8.9 −9.0 0.75
2 0.4 0.2 −0.2 0.0 −0.7 −0.7 −0.7 −0.7

Fall 1 0.7 −1.0 0.3 −0.1 0.5 −0.0 0.3 0.0 0.65
2 −0.5 1.6 −1.0 0.0 0.1 −1.6 −1.3 −0.1

Winter 1 0.2 −0.5 0.6 −0.2 0.2 0.4 0.4 −0.4 0.45
2 0.0 −0.6 0.2 −0.4 1.2 1.4 0.3 1.0
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FIG. 3. Bar and rose plots for key variables under each estimated regimes in spring and fall 2019. The height of
the bars indicate the sample means with imposed line segments indicating twice of the sample deviations above
and below the means. The rose plots display the distribution of wind directions (width of angles) and average
speed (length of radius). Sample sizes of each regime is reported in the subtitle.

in that the splitting boundaries are determined empirically by multivariate covariates, which
contrasts to the threshold regression where the boundary variable has to be user-specified.

Figure 3 displays summary statistics of PM2.5 and the meteorological variables under the
three regimes in the spring and fall seasons, as well as the rose plots for the wind direc-
tions and the average integrated wind speed (IWS). It shows that the segmented regression
picked up three meteorological regimes on PM2.5 where Regime 1 corresponded to the pol-
lution state with high DEWP and high proportion of Calm and Variable wind (CV) which are
known to encourage the secondary generation of PM2.5 and unfavorable static atmospheric
diffusion, Regime 2 was a transitional state between the clean and high pollution states with
reduced DEWP and CV, and Regime 3 was a cleaning state dominated by the northerly wind
which brought cleaner and cooler air from the north. Results of the other two seasons and
analysis are provided in Figure S5 of the SM.

9. Discussion. This paper develops a statistical inference approach for four-regimes seg-
mented linear models, which broadens the scope of the two-regime models of [22] and [35],
and can attains valid inference for degenerated models with less than four regimes. The pro-
posed segmented model is shown to produce better in-sample and out-sample results for the
air quality data in Beijing and produced regime-splitting results which had clear atmospheric
physics interpretation.

There are two possible extensions which may be considered in future research. One is to
allow endogeneity which may be encountered in economic and social behavior applications.
If Xt is endogenous and Zt is exogenous, β0 and γ 0 can be consistently estimated with in-
strument variables V t and the two-stage least squares estimation (2SLS) by first regressing
Xt on V t , and then using the fitted X̂t to substitute Xt in the four-regime model. The LS
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estimation via the MIQP and the inference methods for the four-regime model presented in
this paper is still applicable. However, the 2SLS is no longer working if Zt is endogenous
as discussed in [36], who proposed a conditioning and re-centering approach which might
be extended to the four-regime model. Specifically, let g(Xt ,Zt ) = XT

t β10 + E(εt |Xt ,Zt ),
δk0 = βk0 − β10 for k �= 1 and et = εt − E(εt |Xt ,Zt ), then Model (2.1) can be written as
Yt = g(Xt ,Zt ) + ∑3

k=1 XT
t δk01{Zt ∈ Rk(γ 0)} + et , which is a partially linear segmented

model, where γ 0 is identifiable without instrument variables. However, the integrated differ-
ence kernel estimator used in [36] was designed for univariate threshold, and it is interesting
to see how it can be extended to multivariate γ 0. Alternatively, one may consider estimating
γ 0 via the mixed integer programming with the nonlinear E(εt |Xt ,Zt ) part approximated via
sieve functions. How to solve these issues in the context of the four-regime model requires
further investigation.

Another extension is for segmented models with L > 2 splitting hyperplanes. In general,
the L splitting hyperplanes in R

d can lead to as many as KL = ∑min(L,d)
i=0

(
L
i

)
segments, as

shown in Section G of the SM [33]. It is clear that the investigations in this study for the two
boundary case provide vital understanding to the general cases. For example, if we consider
an extension to the case of having three hyperplanes in R

d , we can fit a segmented model
with K = ∑min(3,d)

i=0
( 3

i

)
regimes by the least squares estimation, whose criterion function

would have the same form as (3.1). The backward selection procedure in Section 6 can be
employed to specify the optimal number of regimes, and the smoothed regression bootstrap
is still able to facilitate the inference for γ 0 and β0. Furthermore, the proof for the asymp-
totic distributions of the least squares estimators can be modified to suit the more general
segmented models. The main challenge for the general cases is the complicated model form
and demanding computation costs caused by the increase of L, requiring efforts in further
studies. On the other hand, as KL grows exponentially with respect to L if d > L and poly-
nomially if d ≤ L, there would be little need to consider segmented models with large L and
d as the nonparametric local models (regression trees, etc) may be better suited.

Funding. The research was partially supported by National Natural Science Foundation
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical inference on four-regime segmented regression models”
(DOI: 10.1214/24-AOS2417SUPP; .pdf). In the supplementary material, we present technical
details, proofs and additional results of the simulations and the case study.
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