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Notations. Throughout the supplementary material, we use c1, c2,C1,C2, · · · to denote
generic finite positive constants, which may differ from line to line. We use 1(A) as the in-
dicator function of an event A. For any vector v = (v1, · · · , vd)T, let ‖v‖ = (

∑d
i=1 v

2
i )

1/2

be its L2-norm. For any r > 0, we define N (v0; r) = {v : ‖v− v0‖ ≤ r}. Denote by v−1

as the sub-vector of v excluding its first element, i.e., v−1 = (v2, · · · , vd)T. For any two
sets A,B, we let A \ B = A ∩ Bc, where Bc is the complement of B, and A 4 B =
(A \B) ∪ (B \A). The empirical measure ET (·) denotes the sample average of a sequence
of random elements with T observations, i.e., ET (Xt) = T−1

∑T
t=1Xt. We also denote

GT (·) =
√
T{ET (·)−E(·)}.

For the four-regime regression model

Yt =

4∑
k=1

XT

t βk1{Zt ∈Rk(γ)}+ εt,

we define the indicator functions for the t-th observation on the k-th regions as

1
(k)
t (γ) := 1{Zt ∈Rk(γ)} for k ∈ {1, · · · ,4};

and for l= 1 and 2, let

1l,t(γ) := 1(ZT

l,tγ > 0) and 1l,t(γ, γ̃) := 1(ZT

l,tγ ≤ 0<ZT

l,tγ̃). (1)

For each 1≤ k ≤ 4, that z = (z1,z2) ∈Rk(γ) or not depends on the signs of zT

1γ1 and zT

2γ2.
As results, for each l= 1 and 2 and 1≤ k ≤ 4, we denote

s
(k)
l = sign (zT

l γl) , for (z1,z2) ∈Rk(γ), (2)
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for each l ∈ {1,2} and k ∈ {1, · · · ,4}, which is well-defined since any z ∈ Rk(γ) has the
same sign (zTγl). Specifically, in the four-regime model, we have s(1)1 = s

(1)
2 = 1; s

(2)
1 =

−1, s
(2)
2 = 1; s

(3)
1 = s

(3)
2 =−1; and s(4)1 = 1, s

(4)
2 =−1. We now define the pairs of adjacent

sub-regions. For the l-th splitting hyperplane, we let

S(l) =
{
(j, k) : s

(j)
l 6= s

(k)
l and s

(j)
i = s

(k)
i if i 6= l

}
, (3)

that is, {zT

l γl = 0} is the only splitting hyperplane that Rj(γ) and Rk(γ) are on opposite
directions of it. Specifically, in the four-regime model, S(1) = {(1,2), (3,4), (2,1), (4,3)}
and S(2) = {(1,4), (2,3), (4,1), (3,2)}. Let

m(Wt,θ) = {Yt −
4∑

k=1

XT

t βk1k(Z
T

1,tγ1,Z
T

2,tγ2)}2.

We denote by MT (θ) = ET {m(Wt,θ)} and M(θ) = E{m(Wt,θ)} for any θ ∈Θ.

APPENDIX A: AUXILIARY LEMMAS

In this section, we provide some useful lemmas that will be constantly used in the proofs
of main results.

A.1. Lemmas for moment inequalities and empirical processes. The following
lemma establishes a uniform law of large numbers for the segmented linear models with
an α-mixing sequence of observations.

LEMMA A.1 (Glivenko-Cantelli). Let γ = (γT

1 ,γ
T

2 )
T ∈

∏2
l=1Γl. Let Ut = U(Wt) be a

function of Wt with suptE‖Ut‖4 <∞. Then under the α-mixing condition in Assumption 1,
for each k ∈ {1, · · · ,4} we have

sup
γ∈

∏2
l=1 Γl

|ET {Ut1{Zt ∈Rk(γ)}} −E{Ut1{Zt ∈Rk(γ)}}|= op(1).

REMARK A.1. In this lemma, the geometric decaying rate of the α-mixing coefficient in
Assumption 1 can be relaxed as a polynomial rate satisfying

∑∞
t=1α(t)

1− 2

r <∞ for some
r > 2.

PROOF. Let Fl = {zl : zT

l γ < 0,γ ∈ Γl}. By Example 2.6.1 of van der Vaart and Wellner
(1996) we know that the VC-dimension of Fl is VC(Fl) = dl, where dl is the dimension of zl
for l= 1 and 2. Let Rk = {Rk(γ),γ ∈

∏2
l=1Γl}. Then, Rk consists of intersection of sets in

{Fl, l ∈ {1,2}} or their complements. Then, according to Lemma 2.6.17 of van der Vaart and
Wellner (1996), Rk is a VC-class which can pick out at most O(n

∑2
l=1 dl−2) subsets of any

given set {xi}ni=1 for xi ∈ R
∑2

l=1 dl . Hence, by Lemma 2.6.18 of van der Vaart and Wellner
(1996), the function class Gk = {g(u,z) = u1(z ∈ R),R ∈ Rk} is a VC-subgraph function
class, which implies that Gk has a finite uniform covering numbers.

For any fixed γ ∈
∏2
l=1Γl, by the ergodic thoeorem for the α-mixing processes (see Theo-

rem 10.2.1 of Doob, 1953), we have |ET {Ut1{Zt ∈Rk(γ)}} −E{Ut1{Zt ∈Rk(γ)}}|=
op(1) for each k ∈ [4]. Because the covering number of Gk is finite, using the same argu-
ments as in Theorem 2.4.1 of van der Vaart and Wellner (1996), the uniform weak law of
large numbers is established.

The next lemma provides useful moment inequalities about perturbations of γ0 around its
neighborhoods.
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LEMMA A.2. Suppose that U is a random variable that satisfiesM0 < E(U |ZT

ℓ γ = 0)<
M1 almost surely with some constants M0,M1 > 0 for any ℓ ∈ {1,2}, where γ ∈N (γℓ0; δ)
for some δ > 0.

(i) Under Assumption 3.(ii), there exist constants c1, δ1 > 0, such that if γ1,γ2 ∈
N (γℓ0; δ1), then

E{U |1ℓ(γ1)− 1ℓ(γ2)|} ≤ c1‖γ1 − γ2‖. (A.1)

(ii) Under Assumption 4.(i), there exist constants c2, δ2 > 0, such that if γ1,γ2 ∈
N (γℓ0; δ2), then

E{U1(Zℓ ∈R) |1ℓ(γℓ0)− 1ℓ(γℓ)|} ≥ c2‖γℓ0 − γℓ‖. (A.2)

where R=Rk(γ0)∪Rh(γ0) with (k,h) ∈ S(ℓ).
(iii) Under Assumption 4.(iii), there exist constants c3, δ3 > 0, such that if γ1,γ2 ∈

N (γ10; δ3) and γ3,γ4 ∈N (γ20; δ3), then

E{U |11(γ1)− 11(γ2)| | |12(γ3)− 12(γ4)|} ≤ c3‖γ1 − γ2‖‖γ3 − γ4‖. (A.3)

PROOF. (i) Let δ1 = min(δ, δ0), where δ0 is specified in Assumption 3 (ii) and δ is in
the assumption of Lemma A.2 (i). Denote N1ℓ =N (γℓ0; δ1). Since for any γ1,γ2 ∈N1ℓ, the
event |1ℓ(γ1)− 1ℓ(γ2)|> 0 implies that there exists γ3 = λγ1 + (1− λ)γ2 with λ ∈ (0,1)
such that ZT

ℓ γ3 = 0, we have

E{U |1ℓ(γ1)− 1ℓ(γ2)|} ≤ EZℓ

{
sup
γ3∈N1ℓ

E(U |ZT

ℓ γ3 = 0) |1ℓ(γ1)− 1ℓ(γ2)|

}
≤M1E (|1ℓ(γ1)− 1ℓ(γ2)|)≤ c1M1‖γ1 − γ2‖,

where the last inequality is due to Assumption 3.(ii), which verifies (A.1).
(ii) For each ℓ = 1 and 2, let N2ℓ = N (γℓ0; δ). Let MR be a positive constant such that

PR = P(Zℓ ∈ AR) > 0, where AR = {‖Zℓ‖ ≤MR,Zℓ ∈ R}. Then, for any γℓ ∈ N2ℓ, we
have

E{U1(Zℓ ∈R) |1ℓ(γℓ)− 1ℓ(γℓ0)|}

=EZℓ
[E(U |Zℓ){|1ℓ(γℓ)− 1ℓ(γℓ0)|1(Zℓ ∈R)}]

≥EZℓ
[ inf
γ3∈N2ℓ

E(U |ZT

ℓ γ3 = 0){|1ℓ(γℓ)− 1ℓ(γℓ0)|1(Zℓ ∈R)}]

≥M0E{|1ℓ(γℓ)− 1ℓ(γℓ0)|1(Zℓ ∈R)} ,

≥M0E{|1ℓ(γℓ)− 1ℓ(γℓ0)|1(‖Zℓ‖ ≤MR,Zℓ ∈R)}

=M0E{1(|qℓ|< |ZT

ℓ∆γℓ|)1(‖Zℓ‖ ≤MR,Zℓ ∈R)}

=M0PRE{1(|qℓ|< |ZT

ℓ∆γℓ|) |Zℓ ∈AR} , (A.4)

where ∆γℓ = γℓ−γℓ0. Take δ3 =min(δ2/MR, δ), where δ2 is specified in Assumption 4.(i).
Then, for any γℓ ∈N (γℓ0; δ2), we have |ZT

ℓ∆γℓ| ≤ δ2. Since the first elements of γℓ0 and γℓ
are 1, ZT

ℓ∆γℓ =Z
T

−1,ℓ∆γ−1,ℓ. Hence, by Assumption 4.(i),

E
{
1(|qℓ|< |ZT

−1,ℓ∆γ−1,ℓ|)|Zℓ ∈AR

}
≥c2E

(
|ZT

−1,ℓ∆γ−1,ℓ|| |Zℓ ∈AR

)
≥c2‖∆γ−1,ℓ‖ inf

∥γ−1∥=1
E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
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=c2‖γℓ0 − γℓ‖ inf
∥γ−1∥=1

E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
. (A.5)

We next show that inf∥γ−1∥=1E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
> 0. If otherwise, there exists

some γ∗ such that ‖γ−1,∗‖ = 1 and E
(
|ZT

−1,ℓγ−1,∗|| |Z−1,ℓ ∈AR

)
= 0. This means

that P(|ZT

−1,ℓγ−1,∗| = 0|Zℓ ∈ AR) = 1, which further implies that P(|ZT

−1ℓγ−1,∗| = 0) ≥
P(|ZT

−1,ℓγ−1,∗| = 0|Zℓ ∈ AR)P(Zℓ ∈ AR) = PR, and contradicts with Assumption 3.(ii).
Therefore, it must hold that

inf
∥γ−1∥=1

E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
> 0. (A.6)

Combining (A.4)–(A.6) completes the proof of Part (ii) of Lemma A.2.
(iii) It follows from similar arguments as in (i) and thus is omitted.

The following moment inequalities are for partial sums, built upon Lemma A.2 and
Rosenthal-type moment inequalities for mixing sequences provided in Peligrad (1982).

LEMMA A.3 (Moment inequalities). Let Ut = U(Wt) be a function of Wt. Under As-
sumptions 1.(i), 3.(ii) and 4.(iii), and suppose that supγ∈N (γl0;δl)E(|Ut|

4 | ZT

l,tγ = 0) <M
for almost surely Zl,t for each l = 1 and 2, where δ1 and M are positive constants. Then,
there exist constants c1, c2 > 0 such that for each l ∈ {1,2}, if γ1,γ2 ∈N (γl0; δl), then

E |GT [Ut {1l,t(γ1)− 1l,t(γ2)}]|4 ≤ c1‖γ1 − γ2‖2 (A.7)

and if γ1,γ2 ∈N (γ10; δ1) and γ3,γ4 ∈N (γ20; δ1), then

E |GT [Ut {11,t(γ1)− 11,t(γ2)}{12,t(γ3)− 12,t(γ4)}]|4 ≤ c2‖γ1 − γ2‖2‖γ3 − γ4‖2.
(A.8)

PROOF. Denote by Ut{1l,t(γ1)− 1l,t(γ2)}= Ũt(γ1,γ2). Then according to Lemma 3.6
of Peligrad (1982), there is a constant C > 0 such that

E

∣∣∣∣∣
T∑
t=1

{Ũt(γ1,γ2)−EŨt(γ1,γ2)}

∣∣∣∣∣
4

≤C
(
T 2‖Ũt(γ1,γ2)‖42 + T‖Ũt(γ1,γ2)‖44

)
,

which implies that

E
∣∣∣GT {Ũt(γ1,γ2)}

∣∣∣4 ≤2C[E{Ũt(γ1,γ2)}2]2

=2C{E(U2
t |1l,t(γ1)− 1l,t(γ2)|)}2

≤C ′‖γ1 − γ2‖2, (A.9)

for some constant C ′ > 0, where the last inequality is from (A.1) in Lemma A.2. Therefore,
(A.7) is verified. Similarly, (A.8) can be shown by using Lemma 3.6 of Peligrad (1982) and
the moment inequality (A.3).

The next lemma is a maximal inequality for empirical processes with regime indicators
under the α-mixing condition.
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LEMMA A.4 (Maximal inequalities). Suppose that the conditions in Lemma A.3 hold.
Then there exist constants c1, c2 > 0 such that for any λ and ε > 0, it holds that

P

{
sup

γ1,γ2∈N (γl0;ε)
|GT [Ut {1l,t(γ1)− 1l,t(γ2)}]|> λ

}
≤ c1
λ2
ε2, for l= 1,2 and (A.10)

P

 sup
γ1,γ2∈N (γ10;ε)
γ3,γ4∈N (γ20;ε)

|GT [Ut {11,t(γ1)− 11,t(γ2)}{12,t(γ3)− 12,t(γ4)}]|> λ

≤ c2
λ4
ε4.

(A.11)

PROOF. The first part (A.10) follows similar arguments as that in proof of Lemma I.1 of
Lee et al. (2021). We now show (A.11) by adapting the proof of Lemma I.1 of Lee et al.
(2021), which mainly employed Theorem 1 of Bickel and Wichura (1971).

First, by applying (A.8) of Lemma A.3, we know that for some δ > 0 and any γj ,γ ′
j ∈

N (γj0; δ) and any γk,γ ′
k ∈N (γk0; δ),

E
∣∣GT

{
Ut
∣∣1j,t(γj)− 1j,t(γ

′
j)
∣∣ ∣∣1k,t(γk)− 1k,t(γ

′
k)
∣∣}∣∣4 ≤C1‖γj − γ ′

j‖2‖γk − γ ′
k‖2,
(A.12)

for some constant C1 > 0. Let γ0 = (γT

j0,γ
T

k0)
T, γ = (γT

j ,γ
T

k )
T and

JT (γ) =GT {Ut |1j,t(γj)− 1j,t(γj0)| |1k,t(γk)− 1k,t(γk0)|} . (A.13)

By equation (1) of Bickel and Wichura (1971),

sup
γ:∥γ−γ0∥≤ε

|JT (γ)| ≤ d ·M ′′ + |JT (γ̃)| , (A.14)

where d = dj + dk and γ̃ = γ0 + ε1 is the elementwise increment of γ0 by a positive con-
stant ε, and the supremum is taken over a hyper-cube {γ : 0≤ γi − γi,0 ≤ ε, i ∈ [d]}, and the
precise definition and an upper bound of M ′′ are referred to Bickel and Wichura (1971). It
is sufficient to show that each of M ′′ and JT (γ̃) satisfies the conclusion of the lemma since
|a|+ |b|> 2c implies either |a|> c or |b|> c.

To apply Theorem 1 of Bickel and Wichura (1971), we need to consider the increment
of the process JT around a block in the tube Tε = {γ : ‖γ − γ0‖ ≤ ε}. For a block B =
(γ1,γ2] = (γ11, γ21]× · · · × (γ1d,γ2d] in the tube Tε , let

JT (B) =
∑
k1=0,1

· · ·
∑
kd=0,1

(−1)d−k1−···kdJT (γ11 + k1(γ21 − γ11), · · · , γ1d + kd(γ2d − γ1d))

=
∑
k2=0,1

· · ·
∑
kd=0,1

(−1)d−k2−···kd {JT (γ11, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d))

−JT (γ21, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d))} .

It follows from the Cr-inequality that there exists some positive constants C2 and C3 such
that

E |JT (B)|4 ≤C2

∑
k2=0,1

· · ·
∑
kd=0,1

E{|JT (γ11, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d))

− JT (γ21, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d)) |4}. (A.15)
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Let γ1(ψ) = (γ11,ψ
T)T and γ2(ψ) = (γ21,ψ

T)T, which are identical except for the first
element, such that ‖ψ− γ−1,0‖ ≤ ε. Then, (A.15) implies that

E |JT (B)|4 ≤C3 sup
ψ∈N (γ−1,0;ε)

E |JT {γ1(ψ)} − JT {γ2(ψ)}|4 (A.16)

for some positive constant C3. Let ψ̃k be the last dk elements ψ, and let γ1,j(ψ) and γ2,j(ψ)
be the vectors of the first dj elements of γ1(ψ) and γ2(ψ), respectively. Then, note that for
any ψ, by the triangle inequality,

|JT {γ1(ψ)} − JT {γ2(ψ)}|4

≤
∣∣∣GT

{
|Ut| |1j,t(γ1,j(ψ))− 1j,t(γ2,j(ψ))|

∣∣∣1k,t(ψ̃k)− 1k,t(γk0)
∣∣∣}∣∣∣4 . (A.17)

Since ‖γ1,j(ψ) − γ2,j(ψ)‖ ≤ |γ11 − γ21| and ‖ψ̃k − γk0‖ ≤ ε for any ‖ψ − γ0‖ ≤ ε, it
follows from (A.12), (A.16), and (A.17) that there exists some poistive constant C4 such that

E |JT (B)|p ≤C4 |γ11 − γ21|2 ε2 ≤C5 |γ11 − γ21|4 ,

where C5 ≥ C4ε/ |γ11 − γ21|. Now, without loss of generality, we can assume that µ(B) ≥
C5 |γ11 − γ21|d, where µ denotes the Legesque measure in Rd, since we can derive the
same bound by choosing the smallest side length of B as |γ11 − γ21|. This implies that
E |JT (B)|4 ≤ C5 {µ(B)}

p

d for any block B ⊂ Tε. Therefore, we can take γ1 = γ2 = 2 and
β1 = β2 =

2
d in the equation (3) of Bickel and Wichura (1971), implying that their equation

(2) holds with γ = 4 and β = 4
d . Since µ(Tε) = εd, by Theorem 1 of Bickel and Wichura

(1971), we conclude that for any λ,

P(M ′′ > λ)≤ C6

λ4
ε4, (A.18)

for some positive constant C6. Furthermore, by the Markov inequality and the moment bound
in (A.12), there exists some positive constant C7 such that

P{JT (γ̃)> λ} ≤ C7

λ4
ε4. (A.19)

Therefore, (A.11) is proved by combining (A.14), (A.18), and (A.19). This completes the
proof of Lemma A.4.

LEMMA A.5. Suppose that the conditions in Lemma A.3 hold. Then we have

sup
∥γl−γl0∥≲T−1

√
TET {Ut |1l,t(γl)− 1l,t(γl0)|}= op(1), for l= 1,2 and (A.20)

sup
∥γ1−γ10∥≲T−1

∥γ2−γ20∥≲T−1

TET {Ut |11,t(γ1)− 11,t(γ10)| |12,t(γ2)− 12,t(γ20)|}= op(1). (A.21)

PROOF. For each l= 1 and 2, letting ε= cT−1 in (A.10) for some constant c > 0 implies
that

sup
∥γl−γl0∥≲T−1

√
T (ET −E){Ut |1l,t(γl)− 1l,t(γl0)|}=Op

(
T− 2

p

)
,

for p ∈ (4,4 + β) with β specified in Lemma A.3. According to (A.1) in Lemma A.2,

sup
∥γl−γl0∥≲T−1

√
TE{Ut |1l,t(γl)− 1l,t(γl0)|}=O

(
T−1

)
.
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Combining the above two equalities leads to (A.20). Similarly, letting ε= cT−1 in (A.11) for
some constant c > 0 implies that

sup
∥γ1−γ10∥≲T−1

∥γ2−γ20∥≲T−1

√
T (ET −E){Ut |11,t(γ1)− 11,t(γ10)| |12,t(γ2)− 12,t(γ20)|}=Op

(
T− 4

p

)
.

According to (A.2) in Lemma A.2 we have

sup
∥γ1−γ10∥≲T−1

∥γ2−γ20∥≲T−1

E{Ut |11,t(γ1)− 11,t(γ10)| |12,t(γ2)− 12,t(γ20)|}=Op
(
T−2

)
.

Combining the above two equations leads to (A.21).

LEMMA A.6. Under the conditions of Lemma A.3, for any constatnts λ, c1, c2 > 0 and
j 6= k ∈ {1, · · · ,4}, we have

sup
c1T−1≤∥γ−γ0∥≤c2

{∣∣∣(ET −E)
(
Ut1

(j)
t (γ0)1

(k)
t (γ)

)∣∣∣− λ‖γ − γ0‖
}
=Op(T

−1). (A.22)

PROOF. The event that j 6= k can be classed into two cases: (i) (j, k) ∈ S(i) for i= 1 or
2; and (ii) (j, k) /∈ S(i) for both i= 1 and 2.

Case (i): (j, k) ∈ S(i) for i ∈ {1,2}. Without loss of generality, we take j = 1, k = 2 to
illustrate. Note that

1
(1)
t (γ0)1

(2)
t (γ) =1(ZT

1,tγ1 ≤ 0<ZT

1,tγ10)1(Z
T

2,tγ20 > 0,ZT

2,tγ2 > 0)

=1(ZT

1,tγ1 ≤ 0<ZT

1,tγ10)
{
1(ZT

2,tγ20 > 0)− 1(ZT

2,tγ2 ≤ 0<ZT

2,tγ20)
}
,

which implies that∣∣∣(ET −E)
{
Ut1

(1)
t (γ0)1

(2)
t (γ)

}∣∣∣≤ ∣∣∣(ET −E)
{
Ũt1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)
}∣∣∣

+
∣∣(ET −E)

{
Ut1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)1(Z
T

2,tγ2 ≤ 0<ZT

2,tγ20)
}∣∣=: I1,T (γ) + I2,T (γ), say,

where Ũt = Ut1
(
ZT

2,tγ20 > 0
)
. Define the “shells”

ST,j =
{
γ : c1jT

−1 ≤ ‖γ − γ0‖< c1(j + 1)T−1
}
.

Then, for any M > 0, we have

P

(
sup

c1T−1≤∥γ−γ0∥≤c2
T {I1,T (γ)− λ‖γ − γ0‖/2}>M

)

≤
∞∑
j=1

P
{
γ ∈ ST,j ,

∣∣∣(ET −E)
{
Ũt1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)
}∣∣∣>MT−1 + λ‖γ − γ0‖/2

}

≤
∞∑
j=1

P
{
γ ∈ ST,j ,

∣∣∣(ET −E)
{
Ũt1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)
}∣∣∣> (M + c1jλ/2)T

−1
}

≤
∞∑
j=1

c3(j + 1)2

(M + c1jλ/2)4
=O

(
1

M4

)
, (A.23)

where the last inequality is by invoking (A.10) in Lemma A.4. Via the similar argument, we
obtain

P

(
sup

c1T−1≤∥γ−γ0∥≤c2
T {I2,T (γ)− λ‖γ − γ0‖/2}>M

)
=O

(
1

T 2M4

)
. (A.24)
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This together with (A.23) verifies (A.22).
Case (ii): (j, k) /∈ S(i) for either i= 1 or 2. Without loss of generality, we take j = 1, k = 3

to illustrate. Then

1
(1)
t (γ0)1

(3)
t (γ) =1(ZT

1,tγ1 ≤ 0<ZT

1,tγ10)1(Z
T

2,tγ2 ≤ 0<ZT

2,tγ20). (A.25)

Therefore,
∣∣∣(ET −E)

{
Ut1

(1)
t (γ0)1

(3)
t (γ)

}∣∣∣ = I2(γ) and the result follows from (A.24).
Combining the two cases completes the proof for the lemma.

A.2. Lemmas for Poisson point processes. We first introduce some basic notations for
the point measures and point processes following the definitions in Resnick (2008).

DEFINITION A.2 (Point measures). Suppose that E is a locally compact space with a
countable basis whose Borel σ-algebra of subsets is E . A point process on E is a measure
m of the following form: for {xi, i≥ 1}, which is a countable collection of points of E, and
any Borel set A ∈ E , m(A) :=

∑
i=1 1 (xi ∈A). If m(K)<∞ for any compact set K ∈ E ,

then m is said to be Radon. Let Mp(E) be the space of all Radon point measures on E.
A sequence {mn} ⊂Mp(E) is said to converge vaguely to m, if

∫
E fdmn →

∫
E fdm as

n→ ∞ for all f ∈ CK(E), the continuous function space with compact support K . The
vague convergence induces a vague topology on Mp(E). Topological space Mp(E) is then
metrizable as a complete separable metric space. Define Mp(E) as the σ-algebra generated
by open sets in Mp(E).

DEFINITION A.3 (Point processes and their weak convergence). A point process on E
is a measurable map from a probability space (Ω,A,P)→ (Mp(E),Mp(E)), i.e., for every
event ω ∈ Ω, the realization of the point process N(ω) is some point measure in Mp(E). A
sequence of point processes Nn weak converges of a point process N, denoted as Nn ⇒N
if EP{h(Nn)}→ EP{h(N)} for all continuous and bounded functions h mapping Mp(E) to

R. Note that if Nn ⇒N then
∫
E f(x)dNn(X)

d−→
∫
E f(x)dN(X) for any f ∈ CK(E) by

the continuous mapping theorem.

DEFINITION A.4 (Poisson point process). A point process N is called a Poisson process
measure (PRM) with mean measure µ if N satisfies

(i) for any F ∈ E and any non-negative integer k, P(N(F ) = k) = exp{−µ(F )}{µ(F )}k /k!
if µ(F )<∞ and P(N(F ) = k) = 0 if µ(F ) =∞;

(ii) if F1, · · · ,Fk are mutually disjoint sets in E , then {N(Fi), i≤ k} are independent
random variables.

The following two lemmas, from Proposition 3.22 of Resnick (2008) and Theorem 1 of
Meyer (1973), respectively, provide key tools to study the weak convergence of point pro-
cesses of extreme events with α-mixing time series.

LEMMA A.7 (Kallenberg’s theorem). Suppose that N is a point process on E and T is
a basis of relatively compact open sets such that T is closed under finite unions and inter-
sections, and for any F ∈ T , P{N(∂F ) = 0}= 1. Then N̂T ⇒N if for all F ∈ T ,

lim
T→∞

P
{
N̂T (F ) = 0

}
= P{N(F ) = 0} , and (A.26)

lim
T→∞

E
{
N̂T (F )

}
= E{N(F )}<∞. (A.27)
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LEMMA A.8 (Meyer’s theorem). Suppose that the sequence {Ant }
n
t=1 (n = 1,2, · · · ) is

stationary and α-mixing with mixing coefficient αn(k) defined as

αn(k) = sup
E∈Ωm

1 ,
F∈Ωn

m+k+1

|P(EF )− P(E)P(F )| , where ΩJj = σ(Anj , · · · ,AnJ) 1≤ j < J ≤ n

for any 1 ≤ k ≤ n. Suppose that the probability of the event Ant is P(Ant ) = a
n + o( 1n) for

some a > 0. Moreover, suppose that the following conditions hold: there exist sequences of
block sizes {pm,m≥ 1}, {qm,m≥ 1} and {tm =m(pm + qm),m≥ 1} such that
(a) for any r > 0, mrαtm(qm)→ 0 as m→∞, where tm =m(pm + qm),
(b) qm/pm → 0, pm+1/pm → 1 as m→∞, and
(c) Ipm =

∑pm−i
i=1 (pm − i)P(Atm1 ∩Atmi+1) = o( 1

m) as m→∞.
Then it holds that

P (exactly k events among {Ant }
n
t=1 happen)→ e−aak

k!
as n→∞.

Remark. (i) Note that for any given n <∞, the α-mixing coefficient αn(k) defined above is
upper bounded by the commonly used α-mixing coefficient α(k) (see e.g., Doukhan, 1995),
where the supreme of F is taken over Ω∞

m+k+1 instead of Ωnm+k+1. (ii) The proof of the above
theorem is based on partitioning the observations into consecutive blocks of size pm and qm
alternately. The condition Ipm = o(1/m) prevents clusters of rare events Ant , preventing the
compound Poisson processes as the limit.

A.3. Lemmas for epi-convergence. In the investigation of the limiting distribution of
γ̂ and β̂, we will employ the tool of epi-convergence in distribution (Knight, 1999), which is
useful in establishing weak convergences of “argmin” functionals, and is more general than
uniform convergence, because it allows for more general discontinuity.

DEFINITION A.5 (Epi-convergence in distribution). Suppose that {Qn(x)} is a sequence
of random lower semi-continuous (l-sc) functions, namely Qn(x)≤ lim infxj→xQn(xj) for
any x and any sequence {xj} whose limit is x. Let L be the space of l-sc functions f :Rd →
R̄, where R̄= [−∞,∞]. The space L can be made into a complete separable metric space.
(Rockafellar and Wets, 1998).

A sequence of functions {Qn} ∈ L is said to epi-converge in distribution to Q if for any
closed rectangles R1, · · · ,Rk in Rd with open interiors R◦

1, · · · ,R◦
k, and any real numbers

r1, · · · , rk:

P(∩kj=1{ inf
x∈Rj

Q(x)> rj})≤ lim inf
n→∞

P(∩kj=1{ inf
x∈Rj

Qn(x)> rj})

≤ limsup
n→∞

P(∩kj=1{ inf
x∈R◦

j

Qn(x)> rj})

≤P(∩kj=1{ inf
x∈R◦

j

Q(x)> rj}).

The above definition of the epi-convergence can be difficult to verify. Instead, we will use
an equivalent characterization given by Knight (1999), using the finite-dimensional conver-
gence and stochastic equi-lower-semicontinuouity.
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DEFINITION A.6 (Finite-dimensional convergence in distribution). A sequence of ran-
dom functions {Qn(x)} converges to Q(x) in distribution in the finite-dimensional sense if
for any finite positive integer k and any (x1, · · · ,xk), it holds that

(Qn(x1), · · · ,Qn(xk))
d−→ (Q(x1), · · · ,Q(xk)) .

DEFINITION A.7 (Stochastic equi-lower-semicontinuous). A sequence {Qn} ∈ L,
where L is the space of l-sc functions defined in Definition A.5, is said to be stochastic
equi-lower-semicontinuous (s.e-l-sc), if for any compact set B and any ϵ, δ > 0, there ex-
ists x1, · · · ,xk ∈ B, for a finite integer k, and some open sets {V (xi)}ki=1 covering B and
containing x1, · · · ,xk, such that

limsup
n→∞

P
(
∪kj=1

{
inf

x∈V (xj)
Qn(x)≤min(ϵ−1,Qn(xj)− ϵ)

})
< δ.

LEMMA A.9 (Theorem 2 of Knight, 1999). Let {Qn} be a stochastic e-l-sc sequence of
functions. Then {Qn} converges to Q in distribution in the finite-dimensional sense if and
only if {Qn} epi-converges in distribution to Q.

APPENDIX B: PROOFS FOR SECTION 3

B.1. Proof of Proposition 1. The following proof is for Proposition 1 on the identifica-
tion of θ0.

PROOF. Note that M(θ) can be expanded as

M(θ) = E{m(W ,θ)}

=E(ε2) +E[
4∑

k=1

4∑
h=1

{XT(βh −βk0)}21(k)(γ0)1
(h)(γ)]

+ 2E{
4∑

k=1

4∑
h=1

εXT(βh −βk0)1(k)(γ0)1
(h)(γ)}

=E(ε2) +
4∑

k=1

4∑
h=1

E[{XT(βh −βk0)}21(k)(γ0)1
(h)(γ)]

=M(θ0) +

4∑
k=1

4∑
h=1

Ak,h(θ), say, (B.1)

where the second equality is because of E (ε|X,Z) = 0. If θ 6= θ0, then one of the following
two cases will hold: (1): γ 6= γ0, or (2): γ = γ0 while β 6= β0. We now consider the two
cases respectively.

Case (1). Suppose that γ 6= γ0. Then for some l ∈ {1,2} and h ∈ {1, · · · ,4}, the true
splitting hyperplane Hl0 : z

T

l γl0 = 0 will partition through Rh(γ). Because Assumption 2
(i) implies that P{|ql|< ϵ|Z−1,l} > 0 almost surely for any ϵ > 0, meaning there is a pos-
itive probability that Z will locate around the neighborhood of the hyperplane zT

l γl0 =
0, we have that for some (k, j) ∈ S(l), it holds that P{Z ∈Rk(γ0)∩Rh(γ)} > 0 and
P{Z ∈Rj(γ0)∩Rh(γ)}> 0. Therefore,

Ak,h(θ)≥ λ0‖βh −βk0‖2, Aj,h(θ)≥ λ0‖βh −βj0‖2
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according to Assumption 2 (ii). Since βk0 6= βj0, either Ak,h(θ)> 0 or Aj,h(θ)> 0. Conse-
quently, M(θ)≥M(θ0) +Ak,h(θ) +Aj,h(θ)>M(θ0).

Case (2). Suppose that γ = γ0 while βk0 6= βk for some k ∈ {1, · · · ,4}. In such a case,

Ak,k(θ) = E
[
{XT

t (βk −βk0)}
2
1{Zt ∈Rk(γ0)}

]
≥ λ0‖βk −βk0‖2 > 0,

by Assumption 2 (ii). Therefore, M(θ) ≥M(θ0) + Ak,k(θ) > M(θ0). Combining the two
cases yields that M(θ)>M(θ0) if θ 6= θ0, which completes the proof.

B.2. Proof of Theorem 3.1. The following proof is for Theorem 3.1 on the consistency
of θ̂.

PROOF. The consistency of θ̂ follows the standard approach for M -estimation (van der
Vaart, 1998). First, we strengthen the result of Proposition 3.1 by a separable condition
(B.2), which can be induced by the continuity of M(θ) at θ0. Note that M(θ) = E(Y 2) −
2
∑4

k=1E{YXTβk1 (Z ∈Rk(γ))} +
∑4

k=1E{(XTβk)
21 (Z ∈Rk(γ))}. The continuity

with respect to β is obvious and it remains to show the continuity at γ0. Note that for any
θ 6= θ0, ∣∣E{(XTβ)21 (Z ∈Rk(γ))} −E{(XTβ)21 (Z ∈Rk(γ0))}

∣∣
≤E1/2{(XTβ)4}|E{1 (Z ∈Rk(γ))} −E{1 (Z ∈Rk(γ0))}|1/2

≤E1/2{(XTβ)4}{
2∑
l=1

|P(ZT

l γl < 0)− P(ZT

l γl0 < 0)|}1/2 ≲
√

‖γ − γ0‖,

where the last inequality is due to Assumption 3.(ii). Thus, M(θ) is continuous at θ0, imply-
ing that

sup
∥θ−θ0∥>ϵ

M(θ)>M(θ0) ∀ϵ > 0. (B.2)

As a direct consequence of Lemma A.1. we have the following uniform convergence

sup
θ∈Θ

|M(θ)−MT (θ)|
P−→ 0, (B.3)

as T →∞. By the definition of θ̂, we have MT (θ̂)≤MT (θ0)+op(1). Because (B.3) implies

that MT (θ0)
P−→M(θ0). It follows that MT (θ̂)≤M(θ0) + op(1), whence

M(θ̂)−M(θ0)≤M(θ̂)−MT (θ̂) + op(1)

≤ sup
θ∈Θ

|M(θ)−MT (θ)|+ op(1)
P−→ 0. (B.4)

Because of (B.2), for any ϵ > 0, there exists η > 0 such that M(θ)>M(θ0)+η if ‖θ−θ0‖>
ϵ. Thus, the event

{
‖θ̂− θ̃0‖> ϵ

}
is contained in the event

{
M(θ̂)>M(θ0) + η

}
, whose

probability converges to 0 in view of (B.4), which completes the proof for ‖θ̂− θ0‖
P−→ 0 as

T →∞.

B.3. Proof of Corollary 3.1.
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PROOF. Let DT = {Wt}Tt=1. We prove the corollary for k = 1 without loss of gen-
erality, where R1(γ0) = {zT

l γl0 > 0, l= 1 and 2}. Then R1(γ0) \ R1(γ) is a subset of
∪2
l=1 {z : zT

l γl0 > 0> zT

l γl}. Therefore,

P{Z ∈R1(γ0) \R1(γ̂)|DT } ≤
2∑
l=1

P (ZT

l γl0 > 0>ZT

l γ̂l|DT )

≤ c1

2∑
l=1

‖γ̂l − γl0‖, (B.5)

where the probability is taken over Z , and the second inequality is due to the consistency
of γ̂ and Assumption 3.(ii). Therefore, P{Z ∈R1(γ0) \R1(γ̂)|DT } → 0 as T →∞. Sim-
ilarly, we have P{Z ∈R1(γ̂) \R1(γ0)|DT } → 0. Since P{Z ∈R1(γ0)4R1(γ̂)|DT } =
P{Z ∈R1(γ0) \R1(γ̂)|DT }+ P{Z ∈R1(γ̂) \R1(γ0)|DT }, we obtain

P{Z ∈R1(γ0)4R1(γ̂)|DT }
P−→ 0

as T →∞. Because P{Z ∈R1(γ0)4R1(γ̂)|DT } is uniformly integrable, we have

P{Z ∈R1(γ0)4R1(γ̂)}= EDT
[P{Z ∈R1(γ0)4R1(γ̂)|DT }]→ 0,

which completes the proof.

B.4. Proof of Theorem 3.2. The following proof is for Theorem 3.2 on the convergence
rate of θ̂.

PROOF. The convergence rate will be derived in two steps. In the first step, we establish
that there is a metric d such that

d2(θ,θ0)≲ E{m(Wt,θ)−m(Wt,θ0)} for any θ ∈N (θ0; δ0), (B.6)

for some δ0 > 0. In the second step, we derive a convergence rate of E{m(Wt, θ̂) −
m(Wt,θ0)} by bounding (ET −E){m(Wt, θ̂)−m(Wt,θ0)}, which combined with Step 1
will lead to the desired convergence rate of θ̂.

Step 1. Note that we can decompose E{m(Wt,θ)−m(Wt,θ0)} as

E{m(Wt,θ)−m(Wt,θ0)} (B.7)

=

4∑
j=1

E
{
(XT

t (βj0 −βj))
2
1
(j)
t (γ0)1

(j)
t (γ)

}

+

4∑
i=1

4∑
k ̸=i

E
{
(XT

t (βi0 −βk))
2
1
(i)
t (γ0)1

(k)
t (γ)

}
,

=:

4∑
j=1

Jj(θ) +

4∑
i=1

4∑
k ̸=i

Gik(θ), say,

where the Jj(θ) term corresponds to the part of observations which are classified to the jth
region under both the hyperplanes with coefficient γ0 and γ, and the Gik term corresponds
of the part of observations which are classified to the ith region under the hyperplanes with
coefficient γ0, but classified to the kth region under γ.



B.4 Proof of Theorem 3.2 13

First, for each j ∈ {1, · · · ,4}, note that

P{Zt ∈Rj(γ0)∩Rj(γ)}=P{Zt ∈Rj(γ0)} − P{Zt ∈Rj(γ0) \Rj(γ)}
(i)

≥P{Zt ∈Rj(γ0)} − c0‖γ0 − γ‖ ≥ P{Zt ∈Rj(γ0)} − c0δ

(ii)

≥P(Zt ∈Rj(γ0))/2> 0, (B.8)

uniformly for any γ ∈ N (γ0; δ), where (i) is due to (B.5) and (ii) is by taking δ sufficiently
small, which is legitimate because of the consistency of γ̂. Then by Assumption 2.(ii),

Jj(θ)≥ c1‖βj0 −βj‖2. (B.9)

For each l ∈ {1,2}, we choose one pair (il, kl) ∈ S(l). Without loss of generality, let
i1 = 1, k1 = 2, i2 = 1, k2 = 3. We now bound the term Gilkl(θ) from below,

Gilkl(θ) =E
{
(XT

t (βil0 −βkl))
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
=E
{
(XT

t δilkl,0)
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
+E

{
(XT

t (βkl0 −βkl))
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
+ 2E

{
XT

t δilkl,0X
T

t (βkl0 −βkl)1
(il)
t (γ0)1

(kl)
t (γ)

}
≥E
{
(XT

t δilkl,0)
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
− 2E

{
|XT

t δilkl,0| |XT

t (βkl0 −βkl)|1
(il)
t (γ0)1

(kl)
t (γ)

}
.

Similarly,

Gklil(θ)≥E
{
(XT

t δilkl,0)
2
1
(kl)
t (γ0)1

(il)
t (γ)

}
− 2E

{
|XT

t δilkl,0| |XT

t (βil0 −βil)|1
(kl)
t (γ0)1

(il)
t (γ)

}
.

Let gilklt = (XT

t δilkl,0)
2
1{Zt ∈Ril(γ0)∪Rkl(γ0)}. Then

(XT

t δilkl,0)
2
1
(il)
t (γ0)1

(kl)
t (γ)+(XT

t δilkl,0)
2
1
(kl)
t (γ0)1

(il)
t (γ) = gilklt |1l,t(γl0)− 1l,t(γl)| ,

whose expectation is bounded by

E
{
gilklt |1l,t(γl0)− 1l,t(γl)|

}
≥ c3‖γl0 − γl‖, (B.10)

for some constants c3 > 0 due to Assumption 4 (ii) and Lemma A.2 (ii).
For the second term of the lower bound of Gilkl(θ), note that there exists a positive con-

stant c4 such that

E
{
|XT

t δilkl,0| |XT

t (βkl0 −βkl)|1
(il)
t (γ0)1l,t(γl,γl0)

}
≤ ‖βkl0 −βkl‖‖δilkl,0‖E

(
‖Xt‖21l,t(γl,γl0)

)
≤ c4‖βkl0 −βkl‖‖γl0 − γl‖, (B.11)

where the first inequality follows from the Cauchy-Schwartz inequality and the second is
implied by Lemma A.2. Similarly,

E
{
|XT

t δilkl,0| |XT

t (βil0 −βil)|1
(kl)
t (γ0)1l,t(γl,γl0)

}
≤c4‖βil0 −βil‖‖γl0 − γl‖. (B.12)
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Combining (B.10)–(B.12) leads to an lower bound of Gilkl(θ) + Gklil(θ). For each given
l= 1 and 2, these together with (B.9) with j = kl and il lead to

{Jkl(θ) + Jil(θ)}/2 +Gilkl(θ) +Gklil(θ)

≥c1(‖βkl0 −βkl‖2 + ‖βil0 −βil‖2)/2 + c3‖γl0 − γl‖

− 2c4 (‖βkl0 −βkl‖+ ‖βil0 −βil‖)‖γl0 − γl‖

=
∑

jl∈{il,kl}

(
c1
2
‖βjl0 −βjl‖2 +

c3
2
‖γl0 − γl‖ − 2c4‖βjl0 −βjl‖‖γl0 − γl‖)

=
∑

jl∈{il,kl}

Llj , say. (B.13)

A lower bound for the term Llj can be derived by considering the following two cases.
(i) If c1‖βjl0 −βjl‖ ≥ 8c4‖γl0 − γl‖, then

Llj ≥
c1
4
‖βjl0 −βjl‖2 +

c3
2
‖γl0 − γl‖.

(ii) If c1‖βjl0 −βjl‖< 8c4‖γl0 − γl‖, then

c3
2
‖γl0 − γl‖ − 2c4‖βjl0 −βjl‖‖γl0 − γl‖ ≥

c3
2
‖γl0 − γl‖ − 16

c24
c1

· ‖γl0 − γl‖2,

which can be further bounded from below by c3‖γl0 − γl‖/4 provided that ‖γl0 − γl‖ ≤
c1c3/(64c

2
4), which is ensured by the consistency of γ̂. Therefore, in the case (ii),

Llj ≥
c1
2
‖βjl0 −βjl‖2 +

c3
4
‖γl0 − γl‖,

provided that ‖γl0 − γl‖ ≤ c1c3/(64c
2
4). Combining Cases (i) and (ii), we have

Llj ≥ c5(‖βjl0 −βjl‖2 +
1

2
‖γl0 − γl‖),

for some generic constant c5 > 0, as long as ‖γl0 − γl‖ ≤ c24/(32c1). By (B.13) we have

{Jkl(θ) + Jil(θ)}/2 +Gilkl(θ) +Gklil(θ)

≥c5(‖βil0 −βil‖2 + ‖βkl0 −βkl‖2 + ‖γl0 − γl‖), (B.14)

for some positive constant c5. Divide the regime index set {1, · · · ,4} to two parts: K1 =
{kl, il : l ∈ {1,2}} and K2 = {1, · · · ,4}/K1. Then from (B.7), (B.9) and (B.14),

M(θ)−M(θ0)≥
∑
k∈K1

Jj(θ) +
∑
k∈K2

Jj(θ) +

K∑
i=1

K∑
k ̸=i

Gik(θ)

≥
2∑
l=1

{Gilkl(θ) +Gklil(θ) +
Jkl(θ) + Jil(θ)

2
}+

∑
k∈K2

Jj(θ)

≥c5
2∑
l=1

(‖βil0 −βil‖2 + ‖βkl0 −βkl‖2 + ‖γl0 − γl‖) + c1
∑
k∈K2

‖βk0 −βk‖2

≥c6(
4∑

k=1

‖βk0 −βk‖2 +
2∑
l=1

‖γl0 − γl‖),
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where c6 =min{c1, c5}. Finally, by the triangle inequality,

M(θ)−M(θ0)≥ c6(‖β0 −β‖2 + ‖γ0 − γ‖), (B.15)

provided that γ ∈ N (γ0; δ0) for some δ0 > 0. Denoting by d(θ,θ0) =
√

‖γ − γ0‖+ ‖β −
β0‖ leads to the desired (B.6).

Step 2. Note that for any θ ∈Θ, we have

(E−ET ){m(Wt,θ)} − (E−ET ){m(Wt,θ0)}

=

4∑
j=1

(E−ET )[{(XT

t (βj0 −βj))21
(j)
t (γ0)1

(j)
t (γ)}]

+

4∑
i=1

4∑
k ̸=i

(E−ET )[{(XT

t (βi0 −βk))21
(i)
t (γ0)1

(k)
t (γ)}]

+ 2

4∑
j=1

ET [{εt(XT

t (βj0 −βj))1
(j)
t (γ0)1

(j)
t (γ)}]

+ 2

4∑
i=1

4∑
k ̸=i

ET [{εtXT

t (βi0 −βk)1
(i)
t (γ0)1

(k)
t (γ)}]

=S1,T + S2,T + S3,T + S4,T , say. (B.16)

We now bound the four terms respectively. For S1,T , note that 1(j)
t (γ) = 1−

∑4
k ̸=j 1

(k)
t (γ)

and

S1,T ≤
4∑
j=1

∣∣∣(E−ET )
{
(XT

t (βj0 −βj))
2
1
(j)
t (γ0)1

(j)
t (γ)

}∣∣∣
≤

4∑
j=1

∣∣∣(E−ET )
{
(XT

t (βj0 −βj))
2
1
(j)
t (γ0)

}∣∣∣
+

4∑
j=1

4∑
k ̸=j

(E−ET )
∣∣∣{(XT

t (βj0 −βj))
2
1
(j)
t (γ0)1

(k)
t (γ)

}∣∣∣
=S1,a,T + S1,b,T , say.

For S1,a,T , by the Cauchy-Schwartz inequality and the ULLN in Lemma A.1, we have
S1,a,T = ‖β − β0‖2op(1). For S1,b,T , due to the compactness of the parameter space for
βj , Assumption 4 (iv) and Lemma A.6, it can be shown that S1,b,T = λ‖γ −γ0‖+Op(T

−1)
for any λ > 0 and γ ∈ (c1T

−1, c2) for any c1, c2 > 0. Therefore,

S1,T ≤ ‖β−β0‖2op(1) + λ‖γ − γ0‖+Op(T
−1). (B.17)

For the second term, we have

S2,T ≤2

4∑
i=1

4∑
k ̸=i

∣∣∣(E−ET )
{
(XT

t (βi0 −βk))
2
1
(i)
t (γ0)1

(k)
t (γ)

}∣∣∣
=λ‖γ − γ0‖+Op(T

−1), (B.18)
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for any λ > 0, γ ∈ (c1T
−1, c2), and any c1, c2 > 0, implied by the same reasoning for the

S1,b,T term. For S3,T , similar to S1,T , it can be decomposed by

S3,T≤2

4∑
j=1

∣∣∣ET {εt (XT

t (βj0 −βj))1
(j)
t (γ0)

}∣∣∣
+ 2

4∑
j=1

4∑
k ̸=j

∣∣∣ET {εt (XT

t (βj0 −βj))1
(j)
t (γ0)1

(k)
t (γ)

}∣∣∣
=S3,a,T + S3,b,T , say.

For S3,a,T , by the martingale central limit theorem (Hall and Heyde, 1980) we have S3,a,T =

‖β−β0‖Op(T−1/2). For S3,b,T , using the same arguments as that for S1,b,T , S3,b,T = λ‖γ−
γ0‖+Op(T

−1). Therefore,

S3,T ≤ ‖β−β0‖Op(T−1/2) + λ‖γ − γ0‖+Op(T
−1). (B.19)

For S4,T , following the same reasons for S2,T , it can be shown that

S4,T ≤ λ‖γ − γ0‖+Op(T
−1). (B.20)

Putting (B.17)–(B.20) together, we obtain that if γ ∈ (c1T
−1, c2) for some c1, c2 > 0, then

(E−ET ){m(Wt,θ)−m(Wt,θ0)} ≤‖β−β0‖Op(T−1/2) + ‖β−β0‖2op(1)

+ 4λ‖γ − γ0‖+Op(T
−1).

Since ET {m(Wt, θ̂)} ≤ ET {m(Wt,θ0)} and (B.15), we obtain

C6(‖β̂−β0‖2 + ‖γ̂ − γ0‖)≤‖β−β0‖Op(T−1/2) + ‖β−β0‖2op(1)

+ 4λ‖γ − γ0‖+Op(T
−1).

Since the above bound holds for any λ ∈ (0,1), we can take λ <C6/4, which delivers

C6‖β̂−β0‖2 + (C6 − 4λ)‖γ̂ − γ0‖ ≤ ‖β−β0‖Op(T−1/2) + ‖β̂−β0‖2op(1) +Op(T
−1),

which further implies ‖β̂−β0‖2 =Op(T
−1), and thus, ‖γ̂ − γ0‖=Op(T

−1).

Proof of Corollary 3.2

PROOF. It can be seen straightforwardly from the proof of Corollary 3.1 that for each
k ∈ {1, · · · ,4},

P{Z ∈Rk(γ0)4Rk(γ̂)|DT }≲
2∑
l=1

‖γ̂l − γl0‖, (B.21)

which is of order Op(T
−1/2) by Theorem 3.2. With the uniformly integratability of

P{Z ∈Rk(γ0)4Rk(γ̂) | DT }, the conclusion of the corollary follows.
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B.5. Proof of Theorem 3.3. The following proof is for Theorem 3.3 on the asymptotic
distribution of θ̂, which requires the following lemmas. Considering that the proofs for these
lemmas are quite lengthy, we provide their proofs later in Subsections B.6–B.10.

For any (uT,vT)T ∈R4p+d1+d2 , we define

QT (u,v) =

T∑
t=1

{m(Wt,β0 +
u√
T
,γ0 +

v

T
)−m(Wt,β0,γ0)}. (B.22)

The following lemma establishes the separability for QT (u,v), whose proof is available in
Section B.6.

LEMMA B.1. Under Assumptions 1-5, uniformly for (uT,vT)T in any compact region of
R4p+d1+d2 , we have

QT (u,v) =WT (u) +DT (v) + op(1), (B.23)

where

WT (u) =

4∑
j=1

[uT

jE{XtX
T

t 1
(j)
t (γ0)}uj − 2

uT

j√
T

T∑
t=1

Xtεt1
(j)
t (γ0)], (B.24)

and

DT (v) =

T∑
t=1

2∑
l=1

∑
(j,k)∈S(l)

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
, (B.25)

with

ξ
(j,k)
t =

(
δT

jk,0XtX
T

t δjk,0 + 2XT

t δjk,0εt
)
{1(j)

t (γ0) + 1
(k)
t (γ0)},

where δjk,0 = βj0 −βk0, ql,t =ZT

l,tγl0, S(l) is the set of indices of adjacent regions split by

the l-th hyperplane as defined in (3), and s(j)l = sign(zT

l γl0) for z ∈Rj(γ0) as defined in (2)
of the main text.

The next lemma is to obtain the finite-dimensional weak limit of DT (v), whose behaviour
is determined by the point processes induced by the observations which are near the split-
ting hyperplanes. The following notations are needed for this lemma and its proof. For each
l = 1,2 and (j, k) ∈ S(l), suppose (ql,Z−1,l, ξ

(j,k)) follows the stationary distribution of
(ql,t,Z−1,l,t, ξ

(j,k)
t ). We denote Fql|Z−1,l

(q|Z−1,l) and Fξ(j,k)|ql,Z−1,l
(ξ|ql,Z−1,l) as the con-

ditional distributions of ql onZ−1,l and ξ(j,k) on (ql,Z−1,l), respectively, and the correspond-
ing conditional densities are fql|Z−1,l

(q|Z−1,l) and fξ(j,k)|ql,Z−1,l
(ξ|ql,Z−1,l), respectively.

Let Z−1,l be the compact support of the density of Z−1,l as required in Assumption 5.

LEMMA B.2. Under Assumptions 1-5, the finite-dimensional weak limit of DT (v) in
(B.25) is

D(v) =

2∑
l=1

∑
j,k∈S(l)

∞∑
i=1

ξ
(j,k)
i 1

{
s
(j)
l

(
J
(j,k)
i,l + (Z

(j,k)
l,i )Tv−1,l

)
≤ 0< s

(j)
l J

(j,k)
i,l

}
, (B.26)

for v = (vT

1 ,v
T

2 )
T, where {(ξ(j,k)i ,Z

(j,k)
l,i )}∞i=1 are independent copies of (ξ̄(j,k),Z−1,l)

with ξ̄(j,k) ∼ Fξ(j,k)|ql,Z−1,l
(ξ|0,Z−1,l), J

(j,k)
l,i = J (j,k)

l,i /fql|Z−1,l
(0|Z(j,k)

l,i ) with J (j,k)
l,i =
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s
(j)
l

∑i
n=1 E

(j,k)
l,n and {E(j,k)

l,n }∞n=1 are independent unit exponential variables which are in-

dependent of {(ξ(j,k)i ,Z
(j,k)
l,i )}∞i=1. Moreover, {(ξ(j,k)i ,Z

(j,k)
l,i , J

(j,k)
l,i )}∞i=1 are independent

across l= 1,2 and (j, k) ∈ S(l).

The following Lemma B.3 establishes the stochastic equi-lower-semicontinuity of {DT (v)},
which together with the finite-dimensional converges in distribution implies the epi-
convergence in distribution.

LEMMA B.3. Under Assumptions 1-5, the sequence {DT (v)} defined in (B.25) is
stochastic equi-lower-semicontinuous, namely that for any compact set B ⊂Rd1+d2 and any
ϵ, δ > 0, there exists v1, · · · ,vm ∈B, where m is a finite integer depending on B, and some
open sets V (v1), · · · , V (vm) covering B and containing v1, · · · ,vm, such that

limsup
T→∞

P
(
∪mj=1

{
inf

v∈V (vj)
DT (v)≤min(ϵ−1,DT (vj)− ϵ)

})
< δ.

To present our next lemma, we first define the following class of piece-wise constant func-
tions on Rd as

F =

{
f(v) =

∞∑
i=0

ai1{v ∈ Fi}, ai ∈R,Fi is a connected set in Rd,Fi ∩ Fj = ∅ if i 6= j

}
.

For each f ∈ F , let f̃ =
∑∞

i=0 i1{v ∈ Fi} be its associated pure jump process, which has
a jump size 1 when moving from Fi to Fi+1. We refer to the sets {Fi} as the level sets
for f and f̃ . Note that any realization of both DT (v) and D(v) belongs to F . Lemma B.4
below ensures that the centroid of the armgin set of f ∈ F , when viewed as a functional
from F to R, is a continuous mapping functional under the topology of epi-convergence. It
is similar in spirit to Lemma 3.1 of Lan et al. (2009), where they established the smallest and
largest argmin functionals are continuous mappings in the univariate Skorohod space, while
our result is under the metric induced by the epi-convergence in multivariate space.

LEMMA B.4. Given a compact space E for v, suppose that (i) on the domain E, the
sequence {fn ∈ F} epi-converges to f0 ∈ F and its jump process {f̃n} also epi-converges to
f̃0; (ii) there are finite numbers of jumps of {f̃n} and f̃0 in E; (iii) f0 has a unique level set.
Let Gn and G0 be the set in E on which fn and f0 are minimized, respectively. Then,∫

v1(v ∈Gn)dv∫
1(v ∈Gn)dv

→
∫
v1(v ∈G0)dv∫
1(v ∈G0)dv

, as n→∞. (B.27)

Let ℓ∞(B) be the space of all bounded functions equipped with the uniform norm on the
domain B, where B is the parameter space for β. The following lemma establishes the weak
convergence of WT in ℓ∞(B) and its asymptotic independence with DT .

LEMMA B.5. Under Assumptions 1-5, the sequence {WT }∞T=1 defined in (B.24) weakly
converges to W in ℓ∞(B), where for any u= (uT

1 , · · · ,uT

4)
T, W (u) =

∑4
k=1Wk(uk),

Wk(uk) = u
T

kE [XXT1{Z ∈Rk(γ0)}]uk − 2uT

kHk, (B.28)

Hk ∼N(0,Σk) and Σk = E
[
XXTε21{Z ∈Rk(γ0)}

]
. Furthermore, the random function

W (u) is independent of D(v) defined in (B.26).
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With the above Lemmas B.1–B.5, we are now ready to prove Theorem 3.3 as follows.

Proof of Theorem 3.3

PROOF. Let VT = T (γ̂ − γ0) with γ̂ ∈ Ĝ and UT =
√
T (β̂− β0) be standardizations of

the LSEs for γ0 and β0, respectively. By the definition of (γ̂, β̂),

(VT ,UT ) ∈argmin
(v,u)

[
TET

{
m(Wt,β0 +

u√
T
,γ0 +

v

T
)−m(Wt,β0,γ0)

}]
∈argmin

(v,u)
QT (v,u), (B.29)

where ET is the empirical average operator,QT (v,u) is defined in (B.22), v = (vT

1 ,v
T

2 )
T and

u = (uT

1 , · · · ,uT

4)
T. The proof includes the following three steps: (1) the separability and

finite-dimensional convergence of {QT (v,u)}∞T=1, (2) the epi-convergence of the random
functions {QT }∞T=1 to Q, and (3) the continuous mapping for the centroid of the argmin set.

Step 1. Separability and finite-dimensional convergence.

According to Lemma B.1, QT (v,u) can be separated as

QT (v,u) =WT (u) +DT (v) + op(1), (B.30)

uniformly for (uT,vT)T in any compact set of R4p+d1+d2 , where WT (u) and DT (v) are
defined in (B.24) and (B.25), respectively.

Let Q(v,u) =W (u) + D(v), where W (u) is defined in (B.24) and D(v) is given in
(B.26). Note that D(v) =D1(v1) +D2(v2), where

Dl(vl) =
∑

j,k∈S(l)

∞∑
i=1

ξ
(j,k)
i 1

{
s
(j)
l

(
J
(j,k)
i,l + (Z

(j,k)
l,i )Tv−1,l

)
≤ 0< s

(j)
l J

(j,k)
i,l

}
,

for l = 1 and 2. By Lemma B.2, for any finite positive integer k and (v(1), · · · ,v(k)) where
v(i) = (vT

(i),1,v
T

(i),2)
T ∈Rd1+d2 for each i ∈ {1, · · · ,4}, we have(
DT (v(1)), · · · ,DT (v(k))

) d−→
(
D(v(1)), · · · ,D(v(k))

)
, (B.31)

namely,D(v) is the finite-dimensional limiting distribution ofDT (v). The finite-dimensional
weak convergence of WT (u) to W (u) is implied by Lemma B.5. Therefore, QT (u,v)
weakly converges to Q(u,v) in the finite-dimensional sense.

Step 2. Epi-convergence.

Lemma B.3 establishes the stochastic equi-lower-semicontinuouity (s.e-l-sc) of the se-
quence {DT }∞T=1. From the regular form of {WT }∞T=1, this sequence of random functions
converges in distribution to W with respect to the topology of uniform convergence, imply-
ing {WT }∞T=1 epi-converge in distribution toW . Then by the finite-dimensional convergence
of {WT }∞T=1 implied from Lemma B.5 and Theorem 3 of Knight (1999), {WT }∞T=1 is a se-
quence of s.e-l-sc random functions. Consequently, {QT }∞T=1 are s.e-l-sc, which together
with the finite-dimensional weak convergence shown in Step 1 implies that {QT }∞T=1 epi-
converges in distribution to Q by Lemma A.9.
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For any given v, by the separatability of Q(u,v) = W (u) + D(v), where W (u)
is quadratic in u as shown in (B.28), we can see that Q(u,v) is minimized at U =
(U1, · · · ,U4)

T, where for k ∈ {1, · · · ,4},

Uk = E [XXT1{Z ∈Rk(γ0)}]−1Hk, Hk ∼N(0,Σk),

and Σk is given in Lemma B.5. By Theorem 1 of Knight (1999), we obtain
√
T (β̂ − β0) =

UT
d−→ U . Let GD be the argmin set of D(v). Since Assumption 3.(ii) implies that neither

Z1,t nor Z2,t is multicollinear, following the same arguments as in Yu and Fan (2021), it
can be shown GD is compact almost surely, so that its centroid is well defined. It is worth
noting that because the minimizers of D(v) are not unique, Theorem 1 of Knight (1999)
can not be directly applicable to imply the weak convergence of argminvDT (v) to that
of argminvD(v). Instead, we consider the centroid of argmin, which can be viewed as a
continuous functional of a process, to obtain the desired weak convergence in Theorem 3.3.

Step 3. Continuous mapping for the centroid of the argmin set.

Since {DT (v)}∞T=1 and D(v) can be endowed into a complete and separable metric space
induced by the epi-convergence, we can find a probability space and random elements with
D′
T (v)

d
= DT (v) for each T ≥ 1 and D′(v)

d
= D(v), such that D′

T (v) epi-converges to
D′(v) with probability 1 (van der Vaart and Wellner, 1996). Let Ĝ′ and G′

D be the argmin
sets of D′

T (v) and D′(v), respectively. Condition (i) of Lemma B.4 is ensured by the epi-
convergence of {D′

T (v)} to D′(v). Because the point process induced by {Tql,t} is asymp-
totic Poisson, there are stochastically finite number of jumps in any compact region, and
Condition (ii) Lemma B.4 holds with the probability approaching 1. Also, Condition (iii) is
ensured by the continuity of the jump size ξ(j,k)i of D(v). Applying Lemma B.4, we have
C(Ĝ′)→ C(G′

D), where C(E) denotes the centroid of any bounded set E. Hence, we con-

clude that T (γ̂c − γ0) = C(Ĝ) d−→ C(GD) = γcD . Finally, the asymptotic independence be-
tween

√
T (β̂ − β0) and T (γ̂c − γ0) is implied by the independence between W (u) and

D(v) established in Lemma B.5. Because T (γ̂c1 − γ10) and T (γ̂c2 − γ20) depend asymptoti-
cally on D1(v) and D2(v), respectively, which are shown to be independent in Part 3 of the
proof of Lemma B.2, the asymptotic independence between T (γ̂c1 − γ10) and T (γ̂c2 − γ20)
follows.

B.6. Proof of Lemma B.1.

PROOF. First, the left-hand of (B.23) admits the following decomposition:

TET {m(Wt,β0 +
u√
T
,γ0 +

v

T
)−m(Wt,β0,γ0)}

=

4∑
j=1

T∑
t=1

(uT

j

XtX
T

t

T
uj −uT

j

2√
T
Xtεt)1

(j)
t (γ0)1

(j)
t (γ0 +

v

T
)

+

4∑
i ̸=j

T∑
t=1

{(δij,0 −
uj√
T
)TXtX

T

t (δij,0 −
uj√
T
) + 2XT

t (δij,0 −
uj√
T
)εt}1(i)

t (γ0)1
(j)
t (γ0 +

v

T
)

=

4∑
j=1

Hj(h) +

4∑
i ̸=j

Fij(h), say. (B.32)
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For the Hj term, let Rj,t = uT

jXtX
T

t uj1
(j)
t (γ0), by the ULLN in Lemma A.1,

(ET −E){Rj,t1(j)
t

(
γ0 +

v

T

)
}= op(1). (B.33)

Note that

E{
∣∣∣Rj,t1(j)

t (γ0 +
v

T
)−Rj,t

∣∣∣}
≤

2∑
l=1

E{Rj,t|1l,t(γl0)− 1l,t(γl0 +
vl
T
)|}

(i)

≲
∑2

l=1 ‖vl‖
T

= o(1), (B.34)

where (i) is implied by Lemma A.2. Then, combining (B.33) and (B.34) yields
T∑
t=1

uT

j

XtX
T

t

T
uj1

(j)
t (γ0)1

(j)
t

(
γ0 +

v

T

)
=ET

{
Rj,t1

(j)
t

(
γ0 +

v

T

)}
=E(Rj,t) + op(1) =

4∑
j=1

uT

jE
{
XtX

T

t 1
(j)
t (γ0)

}
uj + op(1). (B.35)

For the second part of Hj(h), let Sj,t = 2uT

jXtεt1
(j)
t (γ0). Note that

√
TET

[
Sj,t

{
1
(j)
t

(
γ0 +

v

T

)
− 1

(j)
t (γ0)

}]
≤

2∑
l=1

√
TET

{
|Sj,t|

∣∣∣1l,t(γl0)− 1l,t(γl0 +
vl
T
)
∣∣∣}= op(1),

according to (A.20) in Lemma A.5. Hence, applying Lemma A.5 gives
√
TET

{
Sj,t1

(j)
t

(
γ0 +

v

T

)}
=
√
TET

{
Sj,t1

(j)
t (γ0)

}
+ op(1). (B.36)

Combining (B.35) and (B.36) and summing across j = 1, · · · ,4 leads to
4∑
j=1

Hj(h) =WT (u) + op(1). (B.37)

For the Fij(h) terms (i 6= j ∈ {1, · · · ,4}) in (B.32), we divide them into two cases ac-
cording to whether there exists l ∈ {1,2} such that (i, j) ∈ S(γl0) or not. For those (i, j) that
does not have l ∈ {1,2} such that (i, j) ∈ S(l), i.e., s(i)1 6= s

(j)
1 and s(i)2 6= s

(j)
2 ,

1
(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)
≤
∣∣∣11,t(γl0)− 11,t

(
γ10 +

v1
T

)∣∣∣ ∣∣∣12,t(γh0)− 12,t

(
γ20 +

v2
T

)∣∣∣ .
Then, applying (A.21) in Lemma A.5, where we define Ut in Lemma A.5 as∣∣∣∣(δij,0 − uj√

T
)TXtX

T

t (δij,0 −
uj√
T
) + 2XT

t (δij,0 −
uj√
T
)εt

∣∣∣∣ ,
yields that

Fij(h) = op(1), if (i, j) /∈ S(l) for any l ∈ {1,2} . (B.38)

Otherwise, if there exists l ∈ {1,2} such that (i, j) ∈ S(l),

Fij(h) = TET {ξ(i,j)t 1
(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}+

√
TET {T (i,j)

t 1
(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}
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+ET {U (i,j)
t 1

(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}+

√
TET {V (i,j)

t 1
(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}, (B.39)

where ξ(i,j)t is defined in (B.25), and

T
(i,j)
t = δT

ij,0XtX
T

t uj , U
(i,j)
t = uT

jXtX
T

t uj and V (i,j)
t =−2XT

t ujεt.

For the first term on the right-hand side of (B.39), we note that 1(i)
t (γ0)1

(j)
t

(
γ0 +

v
T

)
= 1

means that Zt is classified into Ri(γ0) under the true γ0, but is classified into Rj(γ) under
the candidate parameter γ. Since the i-th and the j-th regions are on the opposite sides of
the l-th hyperplane, while are on the same side of the h-th hyperplane for the h 6= l ∈ {1,2},
we have the following two implications: (i) sign(ZT

l,tγl0) 6= sign
{
ZT

l,t

(
γl0 +

vl

T

)}
, which is

equivalent to

1
{
s
(i)
l Z

T

l,t

(
γl0 +

vl
T

)
≤ 0< s

(i)
l Z

T

l,tγl0

}
= 1;

and (ii) sign(ZT

h,tγh0) = sign
{
ZT

h,t

(
γh0 +

vh

T

)}
for h 6= l ∈ {1,2}, which is equivalent to

1
{
0<min{s(i)h Z

T

h,tγh0, s
(i)
h Z

T

h,t

(
γh0 +

vh
T

)
}
}
= 1.

For (i, j) ∈ S(l), let 1(i,j)
t (γ0) = 1

(i)
t (γ0) + 1

(j)
t (γ0). It is noted that∣∣∣1(i,j)

t (γ0)1
(j)
t (γ0 +

v

T
)− 1

(i,j)
t (γ0)1l,t{s

(i)
l Z

T

l,t(γl0 +
vl
T
)≤ 0< s

(i)
l Z

T

l,tγl0}
∣∣∣

≤
∣∣∣11,t(γ10)− 11,t(γ10 +

v1
T
)
∣∣∣ ∣∣∣12,t(γ20)− 12,t(γ20 +

v2
T
)
∣∣∣ . (B.40)

Applying (A.21) in Lemma A.5, we have

TET
{
|ξ(i,j)t |

∣∣∣11,t(γ10)− 11,t

(
γ10 +

v1
T

)∣∣∣ ∣∣∣12,t(γ20)− 12,t

(
γ20 +

v2
T

)∣∣∣}= op(1),

which, together with (B.40), implies that

TET
{
ξ
(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
=TET

{
ξ
(i,j)
t 1l,t

{
s
(i)
l Z

T

l,t

(
γl0 +

vl
T

)
≤ 0< s

(i)
l Z

T

l,tγl0

}}
+ op(1)

=TET
{
ξ
(i,j)
t 1l,t

{
s
(i)
l

(
Tql,t +Z

T

l,tvl
)
≤ 0< s

(i)
l Tql,t

}}
+ op(1)

=D
(i,j)
T (v) + op(1), say, (B.41)

where in the second equality ql,t =ZT

l,tγ0.
For the second term of (B.39), note that∣∣∣T (i,j)

t 1
(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)∣∣∣≤ ∣∣∣T (i,j)
t

∣∣∣ ∣∣∣1l,t(γl0)− 1l,t(γl0 +
vl
T
)
∣∣∣ .

According to (A.20) in Lemma A.5, it holds that
√
TET

{
T
(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
= op(1). (B.42)

With the same arguments, we have

ET
{
U

(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
= op(1), (B.43)
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√
TET

{
V

(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
= op(1). (B.44)

Finally, combining (B.39) and the four parts (B.41)–(B.44) yields

Fij(h) =D
(i,j)
T (v) + op(1), if there exists l ∈ {1,2} such that (i, j) ∈ S(l). (B.45)

Since QT (u,v) =
∑4

j=1Hj(h) +
∑4

i ̸=j Fij(h) as shown in (B.32), using (B.37) for the
Hj(h) terms, and (B.38) and (B.45) for the Fij(h) terms, the desired result (B.23) for the
decomposition of QT (u,v) is obtained.

B.7. Proof of Lemma B.2.

PROOF. For notational simplicity, in this proof, we show the marginal weak convergence
of DT (v), i.e., DT (v)

d−→ D(v) for any fixed v, since the finite-dimensional weak conver-
gence can be easily extended with the similar argument but more involved notations. Specifi-
cally, to show that

(
DT (v(1)), · · · ,DT (v(m))

) d−→
(
D(v(1)), · · · ,D(v(m))

)
for any finite inte-

germ, it suffices to replace the mapping T (j,k)
l,vl

defined in (B.47) associated with the marginal

v = (vT

1 ,v
T

2 )
T to a m-dimensional mapping (T (j,k)

l,v(1),l
, · · · ,T (j,k)

l,v(m),l
) for each l ∈ {1,2} and

(j, k) ∈ S(l).
The proof is divided to four parts. In Part 1 we express DT as a functional of point pro-

cesses. Part 2 first establishes the weak limit of the empirical point process, by verifying
Meyer’s condition which ensures the asymptotical Poisson for the point process with the
mixing sequences. Then we construct an explicit representation of the limiting process. Part
3 shows the asymptotical independence of the point processes associated with different split-
ting hyperplanes. In Part 4, we employ a continuous mapping theorem for the functional
introduced in Part 1 to obtain the weak convergence of DT (v).

Part 1: Transformation into a functional of point processes. In this part, we will express
DT (v) as a sum of transformations of point processes.

Recall that

DT (v) =

2∑
l=1

T∑
t=1

∑
(j,k)∈S(l)

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
,

where ξ
(j,k)
t =

(
δT

jk,0XtX
T

t δjk,0 + 2XT

t δjk,0εt
)
{1(j)

t (γ0) + 1
(k)
t (γ0)}.

We now show that DT (v) can be written as a sum of functionals of some empirical point
processes. For each l ∈ {1,2} and (j, k) ∈ S(l), we define an empirical point process N̂(j,k)

l,T ∈
Mp(El), which is the space of Radon point measures defined in Definition A.2, where El =
Rs(j)l

×Z−1,l ×R, as

N̂
(j,k)
l,T (F ) :=

T∑
t=1

1
{
(Tql,t,Z−1,l,t, ξ

(j,k)
t ) ∈ F

}
for anyF = (F1,F2,F3) ∈El, (B.46)

where Rs(j)l
= (0,∞) if s(j)l = 1, and Rs(j)l

= (−∞,0] if s(j)l = −1. The element {0} is

excluded from the space of ξ(j,k)t since ξ(j,k)t = 0 does not affect DT (v).
For a given v = (vT

1 ,v
T

2 )
T, for each l ∈ {1,2} and (j, k) ∈ S(l), we define a map T (j,k)

l,vl
:

Mp(El)→R such that

∀ N ∈Mp(E) : T (j,k)
l,vl

(N) =

∫
El

g
(j,k)
l,vl

(x,y, z)dN(x,y, z), (B.47)
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where for each x ∈Rs(j)l
,y ∈Z−1,l and z ∈R,

g
(j,k)
l,vl

(x,y, z) = z · 1
{
s
(j)
l (x+ yTv−1,l)≤ 0< s

(j)
l x
}
.

Then, with (B.46) and (B.47) we can write
T∑
t=1

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
= T (j,k)

l,vl

(
N̂

(j,k)
l,T

)
.

Consequently, DT (v) can be expressed as

DT (v) =

2∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
. (B.48)

Part 2: Weak limit of N̂
(j,k)
l,T . In this part, we derive the weak limit of the empirical

point process N̂
(j,k)
l,T for each l ∈ L and (j, k) ∈ Sl in three steps. In step 1, we calculate

limT→∞E
{
N̂

(j,k)
l,T (F )

}
to obtain the mean measure of the limit process N

(j,k)
l required in

(A.26) in Kallenberg’s theorem (Lemma A.7). In the next step, we first verify Conditions
(a)-(c) of Meyer’s theorem (Lemma A.8), and then use it to show (A.27). The above two
steps guarantee that the empirical point process N̂

(j,k)
l,T weakly converges to a Poisson pro-

cess N(j,k)
l . In the final step, we will find an explicit representation of N(j,k)

l .

Step 1: Calculation of the limit of E
{
N̂

(j,k)
l,T (F )

}
.

For any F = (F1,F2,F3) ∈ El, which is the basis of relatively compact open set in El,
where F1 ⊂Rs(j)l

and F2 ⊂Z−1,l,F3 ⊂R, we have

lim
T→∞

E
{
N̂

(j,k)
l,T (F )

}
= lim
T→∞

TP
{(
Tql,t,Z−1,l,t, ξ

(j,k)
t

)
∈ F

}
= lim
T→∞

T

∫
Tq∈F1,z∈F2,ξ∈F3

fξ(j,k)|(ql,Z−1,l)(ξ|q,z)fql|Z−1,l
(q|z)fZ−1,l

(z)dqdzdξ

(i)
= lim
T→∞

∫
q̃∈F1,z∈F2,ξ∈F3

fξ(j,k)|(ql,Z−1,l)(ξ |
q̃

T
,z)fql|Z−1,l

(
q̃

T
| z)fZ−1,l

(z)dq̃dzdξ

(ii)
=

∫
q̃∈F1,z∈F2,ξ∈F3

fξ(j,k)|(ql,Z−1,l)(ξ | 0,z)fql|Z−1,l
(0 | z)fZ−1,l

(z)dq̃dzdξ

=: µ
(j,k)
l (F )<∞, (B.49)

where (i) is by letting q = q̃/T , (ii) is by the dominating convergence theorem and the conti-
nuity of fql|Z−1,l

(q|z) and fξ(j,k)|(ql,Z−1,l) (ξ | q,z) at q = 0, and that µ(j,k)l (F )<∞ is because
of the uniform boundness of the density functions assumed in Assumption 5 and the com-
pactness of F . The measure µ(j,k)l on El =Rs(j)l

×Z−1,l ×R is defined as

µ
(j,k)
l (dq,dz,dξ) = fξ(j,k)|(ql,Z−1,l) (ξ | 0,z)fql|Z−1,l

(0 | z)fZ−1,l
(z)dqdzdξ. (B.50)
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Suppose that µ(j,k)l defined above is the mean measure of the point process N
(j,k)
l , then

(B.49) verifies the condition (A.26) required in Lemma A.7. To verify the other condition
(A.27), we use Meyer’s theorem, whose requirements are listed in (a)-(c) in Lemma A.8 and
are verified as follows.

Step 2: Verification of the conditions of Meyer’s theorem.

To show limT→∞ P
{
N̂

(j,k)
l,T (F ) = 0

}
= P

{
N̂

(j,k)
l (F ) = 0

}
, we now employ the Meyer’s

theorem presented in Lemma A.8. The following notations are the same as used in Lemma
A.8. For any F = (F1,F2,F3) ∈El and any sample size n≥ 1, define the sequence of “rare”
events as

Ant (F ) = 1
{
(nql,t,Z−1,l,t, ξ

(j,k)
t ) ∈ F

}
,

for 1≤ t≤ n(n= 1,2, · · · ). For any m> 0, we take qm = [Lm]q and pm = [Lm]p for some
L ≥ 1 and p ≥ q ≥ 1, where [x] denotes the largest interger not greater than x. Then tm =
m(qm+pm) =m ([Lm]q + [Lm]p). We illustrate the validity of Conditions (a)-(c) of Lemma
A.8 as follows:

It is noted that Condition (a) is ensured by the condition of geometrical decaying α-mixing
coefficient imposed in Assumption 1. Furthermore, Condition (b) is valid, since qm = [Lm]q

and pm = [Lm]p for some constants L ≥ 1 and p ≥ q > 1, leading to pm+1/pm → 1 and
qm/pm → 0 as m→∞. Finally, for Condition (c), we note that

t2mIpm = t2m

pm−i∑
i=1

(pm − i)P
{
Atm1 (F )∩Atmi+1(F )

}
≤ t2mpm

pm−i∑
i=1

P
{
Atm1 (F )∩Atmi+1(F )

}
≤ t2mpm

pm−i∑
i=1

P{(tmql,1 ∈ F1)∩ (tmql,i+1 ∈ F1)}

(iii)

≲ t2mp
2
m {P (tmql,1 ∈ F1)}2

= t2mp
2
m

(∫
tmq∈F1

dFql(q)

)2

(iv)
= t2mp

2
m

(∫
tmq∈F1,z∈Z−1,l

fql|Z−1,l
(q|z)fZ−1,l

(z)dqdz

)2

(v)
= p2m

(∫
q∈F1,z∈Z−1,l

fql|Z−1,l
(0|z)fZ−1,l

(z)dqdz + o(1)

)2
(vi)

≤ Cp2m (B.51)

for some positive constant C , where Fql(q) is the distribution function of ql =ZT

l γl0. In the
above derivation, (iii) is from Assumption 5 (i), (iv) is by conditioning ql,1 on Z−1,l, (v) is
obtained via the same arguments of (i) and (ii) used in deriving (B.49), and (vi) is because
fql|Z−1,l

is bounded with probability 1 by Assumption 5 (ii) and the compactness of F1.
Consequently, (B.51) implies that as m→∞,

Ipm ≤C
p2m
t2m

=C
p2m

m2(pm + qm)2
≤C

1

m2
= o

(
1

m

)
,
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which verifies Condition (c) in Lemma A.8.
With Conditions (a)-(c) verified and P(ATt (F )) = µ

(j,k)
l (F )/T + o(1/T ) as shown in de-

riving (B.49), for any F with µ(j,k)l (F )> 0, Meyer’s theorem implies that

lim
T→∞

P
{
N̂

(j,k)
l,T (F ) = 0

}
= lim
T→∞

P
{

none of
{
ATt (F )

}T
t=1

occurs
}

=e−µ
(j,k)
l (F ) = P

{
N

(j,k)
l (F ) = 0

}
, (B.52)

where N
(j,k)
l is a Poisson process with mean measure µ(j,k)l . For F with µ

(j,k)
l (F ) = 0,

(B.52) also holds, since in such case (B.49) implies E
{
N̂

(j,k)
l,T (F )

}
→ 0 as T →∞, which

further implies that P
{
N̂l,T (F ) = 0

}
= 1 = e−µ

(j,k)
l (F ) = P

{
N

(j,k)
l (F ) = 0

}
. With (B.52)

and (B.49), Kallenberg’s theorem (Lemma A.7) implies that for each l ∈ {1,2} and (j, k) ∈
S(l), N̂(j,k)

l,T ⇒N
(j,k)
l in Mp(El) as T →∞.

Step 3. Representation of N(j,k)
l .

In this step, we construct a representation of N
(j,k)
l by applying the marking theorem

(Proposition 3.8 of Resnick, 2008) twice. First, let N(j,k)
1,l be a canonical Poisson process on

Rs(j)l
on points {J (j,k)

l,i }∞i=1 defined as

N
(j,k)
1,l (·) =

∞∑
i=1

1
{
J (j,k)
l,i ∈ ·

}
, J (j,k)

l,i = s
(j)
l

i∑
n=1

E(j,k)
l,n , (B.53)

where
{
E(j,k)
l,n

}∞

n=1
is an i.i.d. sequence of unit-exponential variables. Then N

(j,k)
1,l has the

mean measure µ(j,k)1,l (dq) = dq on Rs(j)l
. Let {Z(j,k)

l,i }∞i=1 be an i.i.d. sequence which follows

the distribution FZ−1,l
and is independent of

{
E(j,k)
l,n

}∞

n=1
. Then the marking theorem implies

the composed process

N
(j,k)
2,l (·) =

∞∑
i=1

1
{(

J (j,k)
l,i ,Z

(j,k)
l,i

)
∈ ·
}

is a Poisson process with the mean measure µ(j,k)2,l (dq, dz) = dq · fZ−1,l
(z)dz on Rs(j)l

×
Z−1,l. Let Tl : (q,z)→ (q/fq|Z−1,l

(0|z),z). Then by Proposition 3.7 in Resnick (2008),

N
(j,k)
3,l (·) =

∞∑
i=1

1
{
Tl
(
J (j,k)
l,i ,Z

(j,k)
l,i

)
∈ ·
}
=

∞∑
i=1

1


 J (j,k)

l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
,Z

(j,k)
l,i

 ∈ ·


is a Poisson process with the mean measure

µ
(j,k)
3,l (dq, dz) = µ

(j,k)
2,l ◦ T −1

l (dq, dz) = fql|Z−1,l
(0|z)dq · fZ−1,l

(z)dz (B.54)

on Rs(j)l
× Z−1,l. Finally, let F (j,k)

l (·|z) be the conditional distribution function of ξ(j,k)

given ql = 0 and Z−1,l = z, which makes its density function be fξ(i,j)|(ql,Z−1,l) (ξ | 0,z). Let

{ξ(j,k)i }∞i=1 be an i.i.d. sequence follows the conditional distribution F (j,k)
l (·|Z(j,k)

l,i ). Then by
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applying again Proposition 3.7 in Resnick (2008), the composed point process

N
(j,k)
l (·) =

∞∑
i=1

1


 J (j,k)

l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
,Z

(j,k)
l,i , ξ

(j,k)
i

 ∈ ·

 (B.55)

is a Poisson process with the mean measure

µ
(j,k)
l (dq, dz, dξ) = µ

(j,k)
3,l (dq, dz)F

(j,k)
l (dξ|z)

= fξ(i,j)|(ql,Z−1,l) (ξ | 0,z)fql|Z−1,l
(0 | z)fZ−1,l

(z)dqdzdξ,

which matches the desired mean measure (B.50).
In summary, through Steps (I)-(III) we derive that for each l ∈ {1,2} and (j, k) ∈ S(l), it

holds that N̂(j,k)
l,T ⇒N

(j,k)
l in Mp(El) as T →∞, where N

(j,k)
l is a Poisson point process

with the representation (B.55).

Part 3: Asymptotical independence of point processes.

We now show that the empirical point processes
{
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

}
are

asymptotically independent, that is, for any compact sets {F (j,k)
l ∈ El, l ∈ {1,2}, (j, k) ∈

S(l)} and non-negative integers {k(j,k)l , l ∈ {1,2}, (j, k) ∈ S(l)}, it holds that

P

 ⋂
(l,j,k)∈Is

(
N̂

(j,k)
l,T (F

(j,k)
l ) = k

(j,k)
l

)
→

∏
(l,j,k)∈Is

exp
(
−µ(j,k)l (F

(j,k)
l )

){
µ
(j,k)
l (F

(j,k)
l )

}k(j,k)
l

k
(j,k)
l !

, (B.56)

as T →∞, where Is is any subset of I = {(l, j, k) : l ∈ {1,2}, (j, k) ∈ S(l)}.
Suppose that |Is| = n,1 ≤ n ≤ |I|. For notational simplicity, we label the n triples{(
N̂

(j,k)
l,T ,F

(j,k)
l , k

(j,k)
l

)
, (l, j, k) ∈ Is

}
as
{
(N̂i,T ,Fi, ki),1≤ i≤ n

}
, and define

ĈT =

n∑
i=1

N̂i,T (Fi) =

T∑
t=1

n∑
i=1

1{(Tqi,t,Z−1,i,t, ξi) ∈ Fi}=:

T∑
t=1

Ĉt, say. (B.57)

Let ATi,t be the event {(Tqi,t,Z−1,i,t, ξi) ∈ Fi,t} and BT
t =

⋃n
i=1A

T
i,t, namely BT

t occurs if
and only if at least one of {Ai,t}ni=1 occurs. The derivation for (B.56) includes two steps.
First, we calculate limT→∞ P(ĈT = k), for which we show P(ATi,t ∩ ATi′,t) = O(T−2) as

T →∞. In the second step, we calculate limT→∞ P
{⋂n

i=1

(
N̂i,T (Fi) = ki

)
| ĈT = k

}
with∑n

i=1 ki = k, using the arguments of thinning and blocking.

Step 1. In this step, we first show that for each 1 ≤ t ≤ T , the distinct events ATi,t and ATi′,t
cannot happen together asymptotically. Suppose that

ATi,t =
{
(Tql,t,Z−1,l,t, ξ

(j,k)
t ) ∈ Fi = F1,i × F2,i × F3,i

}
and

ATi′,t =
{
(Tql′,t,Z−1,l′,t, ξ

(j′,k′)
t ) ∈ Fi′ = F1,i′ × F2,i′ × F3,i′

}
, (B.58)
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respectively. First, consider the case that l= l′ and (j, k) 6= (j′, k′). We notice that since both
(j, k) and (j′, k′) belong to S(l), then either (i) j = k′ and j′ = k or (ii) {j, k} ∩ {j′, k′}= ∅.
Under (i) we have P(Tql,t ∈ F1,i ∩ F1,i′) = 0, since F1,i ⊂ Rsjl and F1,i′ ⊂ Rskl , while sjl =

−skl . Also, since ξ(j,k)t ξ
(j′,k′)
t = 0 under (ii), P(ξ(j,k)t ∈ F3,i, ξ

(j′,k′)
t ∈ F3,i′) = 0. In summary,

P(ATi,t ∩ATi′,t) = 0 if l= l′ and (j, k) 6= (j′, k′).
On the other hand, if l 6= l′

P(ATi,t ∩ATi′,t) =P
({

(Tql,t,Z−1,l,t, ξ
(j,k)
t ) ∈ Fi

}
∩
{
(Tql′,t,Z−1,l′,t, ξ

(j′,k)
t ) ∈ Fi′

})
≤P ({Tql,t ∈ F1,i} ∩ {Tql′,t ∈ F1,i′})

=EZ−1,l,Z−1,l′

{∫
Tq∈F1,i,T q′∈F1,i′

f(ql,ql′ )|(Z−1,l,Z−1,l′ )(q, q
′)dqdq′

}

=
1

T 2
EZ−1,l,Z−1,l′

{∫
q̃∈F1,i,q̃′∈F1,i′

f(ql,ql′ )|(Z−1,l,Z−1,l′ )

(
q̃

T
,
q̃′

T

)
dq̃dq̃′

}
=O(T−2) as T →∞. (B.59)

Therefore, we obtain that P(ATi,t ∩ATi′,t) =O(T−2) as T →∞ if i 6= i′.
Note that by the inclusion-exclusion principle,

P(BT
t ) =P

(
n⋃
i=1

ATi,t

)

=

n∑
i=1

P(ATi,t) +
n∑
k=2

(−1)k+1
∑

1≤i1<···<ik≤n
P(ATi1 ∩ · · · ∩ATik). (B.60)

Because P(ATi1 ∩ · · · ∩ATik)≤ P(ATi1 ∩A
T
i2
), from (B.59) and (B.60) it yields that

P(BT
t ) =

n∑
i=1

P(ATi,t) +O(T−2). (B.61)

From (B.49) we have

P(ATi,t) = µi(Fi)/T + o(T−1), (B.62)

which implies that

P(BT
t ) =

n∑
i=1

µi(Fi)/T + o(T−1). (B.63)

With the similar arguments used in Step 2 of Part 2, we can verify the conditions for Meyer’s
theorem for

{
BT
t

}T
t=1

, which delivers that for any 0≤ k ≤ T ,

P
{

exactly k of
{
BT
t

}T
t=1

occur
}
→

exp (−
∑n

i=1 µi(Fi)){
∑n

i=1 µi(Fi)}
k

k!
,

as T →∞. We notice that{
ĈT = k

}
/
{

exactly k of
{
BT
t

}T
t=1

occur
}
⊂
{

for some 1≤ t≤ T, Ĉt ≥ 2
}

and
T∑
t=1

P(Ĉt ≥ 2)≤
T∑
t=1

∑
1≤i ̸=i′≤n

P(ATi1 ∩A
T
i2) =O(nT−1),
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where n is finite, since it is the cardinality of Is. Hence, we obtain

P(ĈT = k) = P
{

exactly k of
{
BT
t

}T
t=1

occur
}
+ o(1)

→
exp (−

∑n
i=1 µi(Fi)){

∑n
i=1 µi(Fi)}

k

k!
, as T →∞. (B.64)

Step 2. Now we turn to calculate P
{⋂n

i=1

(
N̂i,T (Fi) = ki

)}
. Let k =

∑n
i=1 ki. Note that

P

{
n⋂
i=1

(
N̂i,T (Fi) = ki

)}

=P
(
ĈT = k

)
P

{
n⋂
i=1

(
N̂i,T (Fi) = ki

)
| ĈT = k

}

=P
(
ĈT = k

)[
P

{
n⋂
i=1

(
ki of

{
ATi,t
}T
t=1

are assigned
)
| k of

{
BT
t

}T
t=1

occur

}
+ o(1)

]
=:P1,T × P2,T + o(1), say.

For P1,T , by (B.64) we have

P1,T →
exp (−

∑n
i=1 µi(Fi)){

∑n
i=1 µi(Fi)}

∑n
i=1 ki

(
∑n

i=1 ki)!
, (B.65)

as T → ∞. We now proceed to obtain the limits of P2,T by the blocking argument as in
Meyer (1973).

Specifically, for any positive integer m, partition the observation indices into consecu-
tive blocks of pm and qm alternately, where pm and qm are the same as those in Step (2)
of Part 2, beginning with the initial block {1, · · · , pm}. Let Pm and Qm denote those in-
dices falling into size pm and qm blocks, respectively, and tm =m(pm + qm). Let Ii,tmt ={
Atmi,t happens if Btm

t happens
}

. According to (B.62) and (B.63),

P(Ii,tmt ) =P(Atmi,t |B
tm
t ) =

P(Atmi,t ∩B
tm
t )

P(Btm
t )

=
P(Atmi,t )
P(Btm

t )

=
µi(Fi)∑n
i=1 µi(Fi)

+ o(1) =: pi + o(1), say,

as m→∞.
Let Gk = {Gk = {js}ks=1 : 1 ≤ j1 ≤ · · · ≤ jk ≤ tm} be the collection of the subsets of

{1, · · · , tm} with the cardinality k. Then,{
k of

{
Btm
t

}T
t=1

occur
}
= ∪Gk∈Gk

{Btm
t occur iff t ∈Gk}, (B.66)

where “iff” is short for “if and only if”. For each Gk = {js}ks=1 ∈ Gk, let

H(Gk) = {(Hi = {jis}kis=1)
n
i=1 : ∪ni=1Hi =Gk and Hi ∩Hi′ = ∅ if i 6= i′}

be the collection of all possible n-partitions ofGk with each segmentHi containing ki indices
of Gk. Then we note that |H(Gk)|= k!/(

∏n
i=1 ki!).

P{∩ni=1(ki of {Atmi,t }
tm
t=1 are assigned) |Btm

t occur iff t ∈Gk}
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=
∑

(Hi)ni=1∈H(Gk)

P(∩ni=1 ∩
ki
s=1 I

i,tm
jis

). (B.67)

By inspecting the proof of Theorem 1 of Meyer (1973), we find that if k of
{
Btm
t

}tm
t=1

hap-
pens, then asymptotically all the k indices lie in separate blocks in Pm, implying that any
|j − j′| ≥ qm for any j 6= j′ ∈Gk. Therefore, for large enough m, we have∣∣∣∣∣P(∩ni=1 ∩

ki
s=1 I

i,tm
jis

)−
n∏
i=1

ki∏
s=1

P(Ii,tmjis
)

∣∣∣∣∣≤ kαtm(qm),

by applying the definition of the α-mixing coefficients repeatedly for k times. Since
|H(Gk)|= k!/(

∏n
i=1 ki!) and P(Ii,tmjis

) = pi + o(1), we obtain∣∣∣∣∣∣
∑
C∗

P(
⋂

i∈[n],t∈[ki]

Ii,tmjt
)− k!∏n

i=1 ki!

n∏
i=1

pkii + o(1)

∣∣∣∣∣∣≤ k
k!∏n
i=1 ki!

αtm(qm) = o(1), (B.68)

where the last equality is due to that k is a given integer and αtm(qm) → 0 as m→ ∞.
Combining (B.67) and (B.68) leads to

P{∩ni=1(ki of {Atmi,t }
tm
t=1 are assigned) |Btm

t occur iff t ∈Gk}=
k!∏n
i=1 ki!

n∏
i=1

pkii + o(1),

for each Gk ∈ Gk. This together with (B.66) yields that

P2,tm =
k!∏n
i=1 ki!

n∏
i=1

pkii + o(1), as m→∞,

where P2,tm = P{∩ni=1(ki of {Atmi,t }
tm
t=1 are assigned) | k of

{
Btm
t

}tm
t=1

occur}. Since for any
T , there exists a m such that T ∈ [tm, tm+1), the above result implies that

P2,T → k!∏n
i=1 ki!

n∏
i=1

pkii + o(1) =
(
∑n

i=1 ki)!∏n
i=1 ki!

n∏
i=1

{
µi(Fi)∑n
i=1 µi(Fi)

}ki
, as T →∞, (B.69)

since k =
∑n

i=1 ki and pi = µi(Fi)/(
∑n

i=1 µi(Fi)). Combining (B.65) with (B.69) yields
that

P

{
n⋂
i=1

(
N̂i,T (Fi) = ki)

)}
= P1,TP2,T + o(1) =

n∏
i=1

exp (−µi(Fi)){µi(Fi)}ki

ki!
+ o(1),

which proves (B.56) and implies that
(
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
are asymptotically

independent. These together with Part 2 conclude that N̂(j,k)
l,T ⇒N

(j,k)
l inMp(El) as T →∞,

where
(
N

(j,k)
l , l ∈ {1,2}, (j, k) ∈ S(l)

)
are independent Poisson point processes with the

representation (B.55).

Part 4: Continuous mapping.

In this part, we show that T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
d−→ T (j,k)

l,vl

(
N

(j,k)
l

)
as T → ∞. If T (j,k)

l,vl
(·) is

a continuous functional in Mp(El), then it follows by the continuous mapping thoerem. To
show that T (j,k)

l,vl
(·) is continuous mapping from Mp(El) to R, we use Proposition 3.13 in
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Resnick (2008), which requires T (j,k)
l,vl

(·) has a compact support. Therefore, we use a trunca-
tion argument. Recall that for any N ∈Mp(E),

T (j,k)
l,vl

(N) =

∫
El

g
(j,k)
l,vl

(x,y, z)dN(x,y, z),

where x ∈Rs(j)l
,y ∈Z−1,l, z ∈R, and

g
(j,k)
l,vl

(x,y, z) = z · 1
{
s
(j)
l (x+ yTv−1,l)≤ 0< s

(j)
l x
}
.

Therefore, the support of T (j,k)
l,vl

is Q(j)
l ×Z−1,l ×R, where Q(j)

l = {q : s(j)l (q + yTv−1,l)≤
0< s

(j)
l q for some y ∈Z−1,l}, which is compact since Z−1,l is compact. For any M > 0, we

let El,M =
{
(x,y, z) : x ∈Rs(j)l

,y ∈Z−1,l, |z|<M
}

, which is a compact set. Let

RT = T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
=

∫
El

g
(j,k)
l (x,y, z)dN̂

(j,k)
l,T (x,y, z),

RT,M =

∫
El,M

g
(j,k)
l (x,y, z)dN̂

(j,k)
l,T (x,y, z),

R0,M =

∫
El,M

g
(j,k)
l (x,y, z)dN

(j,k)
l,T (x,y, z) and

R0 = T (j,k)
l,vl

(
N

(j,k)
l,T

)
=

∫
El

g
(j,k)
l (x,y, z)dN

(j,k)
l,T (x,y, z).

In the following, we show in three steps that (i)RT,M
d−→R0,M for any fixedM > 0 as T →

∞ by the continuous mapping theorem, (ii) limM→∞ limsupT→∞ P{|RT −RT,M |> ε}→
0 for any ε > 0, and (iii)R0,M

d−→R0 asM →∞. Then by Theorem 4.2 of Billingsley (1968),

RT
d−→R0 as T →∞.

Step (1). For any fixed M > 0, let M(j,k)
l,vl

(N) =
∫
El,M

g
(j,k)
l,vl

(x,y, z)dN(x,y, z) for any
N ∈Mp(E). By Proposition 3.13 in Resnick (2008), if any sequence Nn ⇒ N, then the
points of Nn locating in El,m converge to that of N locating in El,m. Since restricted on
El,M , the function g

(j,k)
l (x,y, z) has a compact support but is discontinuous at x = 0 or

x+ yTv−1,l = 0, the functional M(j,k)
l,vl

is continuous except on

D(M(j,k)
l,vl

) = {N ∈Mp(E) : xNi = 0 or xNi + (yNi )Tv−1,l = 0 for some i≥ 1},

where (xNi ,y
N
i , z

N
i , i≥ 1) denote the points of N. Since

P
{
N

(j,k)
l ∈D(M(j,k)

l,vl
)
}
= P

{
∃ i, J (j,k)

l,i = 0 or J (j,k)
l,i + (Z

(j,k)
l,i )Tv−1,l = 0

}
= 0 (B.70)

and J (j,k)
l,i is absolutely continuous, we have

RT,M =M(j,k)
l,vl

(
N̂

(j,k)
l,T

)
d−→M(j,k)

l,vl

(
N

(j,k)
l

)
=R0,M , (B.71)

for any fixed M > 0 as T →∞, by the continuous mapping theorem.

Step (2). Next, we show that

lim
M→∞

limsup
T→∞

P{|RT −RT,M |> ε}→ 0, (B.72)



32 B PROOFS FOR SECTION 3

for any ε > 0. For notational simplicity, we denote ξt = ξ
(j,k)
t , qt = ql,t,Z−1,t =Z−1,l,t, and

suppose s(j)l = 1 without loss of generality. Then, for any M > 0,

|RT −RT,M | ≤
T∑
t=1

{
|ξt|1 (|ξt| ≥M)1

(
Tqt +Z

T

−1,tv−1,l ≤ 0< Tqt
)}

=:

T∑
t=1

Gt(M), say. (B.73)

Since

E
{
|ξt|1 (|ξt| ≥M) |ZT

l,tγ = 0
}
≤{E(|ξt|2|ZT

l,tγ = 0)}1/2
{
P(|ξt|>M |ZT

l,tγ = 0)
}1/2

≤{E(|ξt|2|ZT

l,tγ = 0)}1/2
{E(|ξt|2|ZT

l,tγ = 0)}1/2

M

=Op
(
M−1

)
(B.74)

almost surely, where the first inequality is via Cauchy-Schwarz inequality and the second
is by Markov inequality, provided E(|ξt|2|ZT

l,tγ = 0) <∞ for γ in a neighborhood of γl,0,
which is ensured by Assumption 4 (iv). Using (B.74) and with the similar arguments as in
the proof of Lemma A.2 (i), we can show that E{Gt(M)}=O

(
(MT )−1

)
. Therefore,

E|RT −RT,M | ≤
T∑
t=1

E{Gt(M)}=O
(
M−1

)
,

for any T and M , which implies (B.72) by Markov inequality.

Step (3). Next, we show that R0 =R0,M + op(1). We notice that

R0 −R0,M =

∞∑
i=1

[
ξ
(j,k)
i 1

(
|ξ(j,k)i |>M

)
1
{
J
(j,k)
l,i +

(
Z

(j,k)
l,i

)
T

v−1,l ≤ 0< J
(j,k)
l,i

}]
.

Let Zmax = max
{
−
(
Z

(j,k)
l,i

)
T

v−1,l,Z
(j,k)
l,i ∈Z−1,l

}
, which is bounded since both Z−1,l

and the space of v−1,l are compact. This means that Zmax <∞. Since fq|Z−1,l
(0|Z−1,l) is

uniformly bounded by some constant, say Fl, by Assumption 5 (ii), the event

J (j,k)
l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
+
(
Z

(j,k)
l,i

)
T

v−1,l ≤ 0<
J (j,k)
l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
≡ J

(j,k)
l,i

implies 0≤J (j,k)
l,i ≤ FlZmax. Therefore,

|R0 −R0,M | ≤
∞∑
i=1

{
ξ
(j,k)
i 1

(
|ξ(j,k)i |>M

)
1(0≤J (j,k)

l,i ≤ FlZmax)
}
. (B.75)

Note that J (j,k)
l,i =

∑i
n=1 E

(j,k)
l,n where {E(j,k)

l,n }∞n=1 is an i.i.d. sequence of unit-exponential

variables, and {ξ(j,k)i }∞i=1 be an i.i.d. sequence follows the conditional distribution F (j,k)
l (·|Z(j,k)

l,i ),

that is independent to {E(j,k)
l,n }∞n=1. Hence, P(t) =

∑N(t)
i=1 ξ

(j,k)
i 1(|ξ(j,k)i | > M) for t ≥ 0
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is compound Poisson process with the jump size ξ
(j,k)
i 1(|ξ(j,k)i | > M), where N(t) =∑∞

i=1 1(J
(j,k)
l,i ≤ t) is a homogeneous Poisson process with rate 1. Therefore, we have

E{|R0 −R0,M |}
(i)

≤FlZmaxE
{
ξ
(j,k)
i 1

(
|ξ(j,k)i |>M

)}
,

(ii)

≤FlZmax

√
E
{(

ξ
(j,k)
i

)2}√
P
(
|ξ(j,k)i |>M

)
(iii)

≤ FlZmaxE
{(

ξ
(j,k)
i

)2}
/M → 0, as M →∞, (B.76)

where (i) is from Wald’s identity (Wald, 1944), (ii) is from Cauchy-Schwartz’s inequality and
(iii) is from Markov’s inequality. Because of the above result, we obtain R0,M =R0+ op(1),

which further implies that R0,M
d−→R0.

Through the three steps we have shown that (i)RT,M
d−→R0,M for any fixedM > 0 as T →

∞ by the continuous mapping theorem, (ii) limM→∞ limsupT→∞ P{|RT −RT,M |> ε}→
0 for any ε > 0, and (iii) R0,M

d−→ R0 as M →∞. Therefore, by applying Theorem 4.2 of

Billingsley (1968), RT
d−→ R0 as T →∞, i.e., T (j,k)

l,vl

(
N̂

(j,k)
l,T

)
d−→ T (j,k)

l,vl

(
N

(j,k)
l,T

)
. Because

in Part 3 it is shown that
(
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
are asymptotically independent,

we conclude that
L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
d−→

L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N

(j,k)
l,T

)
, (B.77)

as T →∞, which concludes the proof.

B.8. Proof of Lemma B.3.

PROOF. The proof for this lemma adapts that in Chernozhukov and Hong (2004). First,
we decompose DT (v) =

∑2
l=1

∑
(j,k)∈S(l)D

(j,k)
T (vl), where vl ∈Rdl for l= 1,2, and

D
(j,k)
T (vl) =

T∑
t=1

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
.

It is sufficient to show that D(j,k)
T (vl) is stochastic equi-lower-semicontinuous for each l ∈

{1,2} and (j, k) ∈ S(l). Without loss of generality, we take l = 1, j = 1, k = 2, since the
other cases can be proved in the same way. To simplify notations, let ṽ = v1, q̃t = q1,t, Z̃t =

Z−1,l,t, ξ̃t = ξ
(j,k)
t and D̃T (ṽ) =D

(1,2)
T (v1). With the above notations,

D̃T (ṽ) =

T∑
t=1

ξ̃t1
{(
T q̃t + Z̃

T

t ṽ−1

)
≤ 0< T q̃t

}
.

Because D̃T (ṽ) is a piece-wise constant function, which implies that D̃T (ṽ) takes discrete
values in each compact open set, it suffices to show that for any compact set B ⊂ Rd1 and
any δ > 0, there are open neighborhoods V (ṽ1), · · · , V (ṽk) of some ṽ1, · · · , ṽk such that
B ⊂∪kj=1V (ṽj) and

P
(
∪kj=1

{
inf

v∈V (ṽj)
D̃T (v)≤ D̃T (ṽj)

})
< δ, (B.78)
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for sufficiently large T .
Let {Zϕ(z̃j), j ≤ J(ϕ)} be J(ϕ) closed equal-sized cubes with the side-length ϕ such that

Z−1,1, the support of the distribution of Z−1,1, can be covered by the union of {Zϕ(z̃j), j ≤
J(ϕ)}, and the center of the cube Zϕ(z̃j) is denoted as z̃j . Construct (2m + 1)J(ϕ) sets
{Vkj , l=−m, · · · ,m, j ≤ J(ϕ)} ⊂Rd1 as

Vkj = {ṽ ∈Rd1 : νk −ψ < z̃Tṽ−1 < νk +ψ,∀z̃ ∈Zϕ(z̃j)},

where ψ > 0 and νk = kψ for k ∈ {−m, · · · ,0, · · · ,m}. Since Z−1,1 is a compact set, which
implies that the range of z̃Tṽ−1 is compact for any compact B, the union of {Vkj} can cover
B by selecting sufficiently large m.

Because D̃T (ṽ) is piece-wise constant, a discontinuity of D̃T (ṽ) can potentially occur
in ∪jVkj only if there exist v∗ ∈ ∪jVkj and (T q̃t∗ , Z̃t∗) for some t∗ ∈ {1, · · · , T} such that
T q̃t∗ = Z̃

T

t∗v∗, satisfying νk−ψ ≤ T q̃t∗ ≤ νk+ψ. If there is such (T q̃t∗ , Z̃t∗), we say D̃T (ṽ)
has a breakpoint in ∪jVkj . Define BT = |{t : 0< T q̃t < Z̄}|, where Z̄ = supz∈Z−1,1,v∈B z

Tv,
as an upper bound on the number of breakpoint of D̃T (ṽ) in B, and let B = |{i : Ji <
Z̄}|, where Ji =

∑i
m=1 Ei with {Ei}∞i=1 being i.i.d. unit exponentially distributed variables.

Because the point process induced by {T q̃t, t ∈ {1, · · · , T} : q̃t > 0} weakly converges to the
point process induced by {Ji}∞i=1 as shown in the proof of Lemma B.2, by the continuous

mapping theorem, we have BT
d−→B. Therefore, the number of breakpoints BT =Op(1).

We now show the breakpoints are separated, namely, no more than one breakpoint can
happen in ∪jVkj with probability arbitrarily close to one if ψ is sufficiently small. Let Ak
to be the event that D̃T (ṽ) has more than one breakpoint in ∪jVkj . Relabelling {T q̃t, t ∈
{1, · · · , T} : q̃t > 0} as {JiT } such that 0< J1T ≤J2T ≤ · · · . Then, because the point pro-
cess corresponding to {q̃t, t ∈ {1, · · · , T} : q̃t > 0} converges weakly to that corresponding
to {Ji}∞i=1, according to continuous mapping theorem, for any finite k ≤ T ,

(J1T , · · · ,JkT )
d−→ (J1, · · · ,Jk). (B.79)

Define Ak to be the event that D̃T (ṽ) has more than two break-points in ∪jVkj . Since ∪kAk
happens if at least one pair (J(i−1)T ,JiT ) for some i≤ BT satisfying JiT −J(i−1)T < 2ψ,
we have

limsup
T→∞

P(∪kAk)≤ limsup
T→∞

P
{

min
2≤i≤NT

(JiT −J(i−1)T )< 2ψ

}
≤ limsup

T→∞
P
{

min
2≤i≤K

(JiT −J(i−1)T )< 2ψ

}
+ P(BT >K)

(i)

≤P
{

min
2≤i≤K

(Ji −J(i−1))< 2ψ

}
+ P(B >K)

(ii)

≤ δ/2, (B.80)

where (i) is by (B.79), (ii) is by taking K sufficiently large such that P(B >K)< δ/4, and
taking ψ sufficiently small such that P

{
min2≤i≤K(Ji −J(i−1))< 2ψ

}
< δ/4. The latter is

possible since by definition Ji−J(i−1) = Ei−1 has independent unit exponential distribution.
Hence

P
{

min
2≤i≤K

(Ji −J(i−1))< 2ψ

}
= P

{
min

2≤i≤K
Ei−1 < 2ψ

}
= 1− e−2ψ(K−1),

which converges to 0 as ψ(K − 1)→ 0.
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We construct centers ṽkj in Vkj such that

νk −ψ < z̃Tṽ−1,kj < νk −ψ+ η, ∀z̃ ∈Zϕ(z̃j),

where η will be set sufficiently small in the next step. Depending on η, we will set ϕ suffi-
ciently small as well to satisfy the above constraints. Note that the left-side hand of (B.78)
can be decomposed as

P
(
∪j,k

{
inf

v∈Vkj(ṽkj)
D̃(v)≤ D̃T (ṽkj)

})
< limsup

T→∞
P{B(η)}+ limsup

T→∞
P(∪kAk), (B.81)

where B(η) is the event that {JiT , i ≤K} are separated, and at least one of JiT ∈ [νki −
ψ,νki − ψ + η] for some ki ∈ {1, · · · ,K}. The bound (B.81) holds because D̃(v) can only
jump if JiT increases, implying that

∪j,k
{

inf
v∈Vkj(ṽkj)

D̃(v)≤ D̃T (ṽkj)

}
∩ (∪kAk)c =B(η).

Due to (B.79) and the fact that {Ji} have a bounded density, we have

limsup
T→∞

P{B(η)}=O(Kη)< δ/2, (B.82)

by choosing η sufficiently small. Combining (B.80)–(B.82) completes the proof for Lemma
B.3.

B.9. Proof of Lemma B.4.

PROOF. Let fn(v) =
∑∞

i=0 ani1(v ∈ Fni), where {ani ∈ R}∞i=1 are jump sizes and
{Fni ∈ Rd}∞i=0 are non-overlapping level sets. Let f̃n(v) =

∑∞
i=0 i1(v ∈ Fni) be the as-

sociated jump process. Note f̃n has a jump with size 1 at the boundary of each level set
Fni. Let the limiting piece-wise constant function be f0(v) =

∑∞
i=0 a0i1(v ∈ F0i), whose

associated jump process be f̃0(v) =
∑∞

i=0 i1(v ∈ F0i). For any compact set E, we define
In(E) = {i : Fn,i ∩E /∈ ∅} and I0(E) = {i : F0,i ∩E /∈ ∅} be the index sets for the level sets
of fn and f0 that have intersections with E, respectively. Let the argmin sets of fn and f0 on
the compact set E be Gn and G0, respectively.

Step 1. Convergence of level sets.
We first show the convergence of the level sets {Fni, i ∈ In(E)} to {F0i, i ∈ In(E)}, using

the epi-convergence of the jump processes {f̃n}. For any interior point vi in F0,i, which
is a continuous point of f0 and f̃0, let ε0 > 0 be any sufficiently small constant such that
N (vi;ε0)⊂ F0,i. By a similar argument to that used in the proof of Lemma B.3, there exists
some v′i ∈N (vi;ε0) such that fn and f̃n are asymptotically equi-lower semicontinuous at v′i.
Since we have {f̃n} epi-converge to f̃0, by applying Theorem 7.10 of Rockafellar and Wets
(1998), we have the pointwise convergence f̃n(v′i)→ f̃0(v

′
i) as n→∞. Let ∂F0,i = F̄0,i \

F ◦
0,i be the boundary of F0,i for each i ∈ I0(E), where sets F̄0,i and F ◦

0,i are the closure and
interior of F0,i, respectively. Then we can find infinitely many v ∈ F ◦

0,i with infv′∈∂F0,i
‖v−

v′‖ = ε0, such that f̃n(v)→ f̃0(v) = i. This together with the connectness of Fn,i implies
that F ε0−0,i ⊂ Fn,i, where F ε0−0,i = F̄0,i \

{
v ∈ F̄0,i, infv′∈∂F0,i

‖v− v′‖ ≤ ε0
}

. Similarly we
can find infinitely many v ∈ E \ F̄0,i with infv′∈∂F0,i

‖v − v′‖ = ε0, such that f̃n(v) →
f̃0(v) 6= i. It means that for each sufficiently large n, there is a jump of f̃n in the region {v ∈
E : infv′∈∂F0,i

‖v−v′‖< ε0} around the boundary of F0,i for each i ∈ I0(E). Therefore, we
obtain |In(E)| → |I0(E)| as n→∞. Also, since ε0 can be taken arbitrarily close to 0 and
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µ(∂F0,i) = 0, where µ is the Lebesgue measure, for each 1 ≤ i ≤N0 and each sufficiently
large n, it holds that |1(v ∈ Fn,i) − 1(v ∈ F0,i)| → 0 almost surely under the Lebesgue
measure.

Step 2. Convergence of the argmin level set.
We now show the minimzed set of fn converges to that of f0. Let F0,i∗ be the level set

on which f0 attains its minimum. By the condition that ξ0,i 6= ξ0,j if i 6= j, such i∗ is unique.
Hence F0,i∗ =G0. Note that unlike the proof of Theorem 1 of Knight (1999), applying Theo-
rem 7.33 of Rockafellar and Wets (1998) can only ensure Gn ⊂G0 asymptotically. However,
such result can be strengthened by utilizing the piece-wise constant property of fn and f0.
From the above paragraph, it has been shown that each level set Fn,i of fn converges to F0,i of
f0. As argued in the previous paragraph, for each i ∈ I0(E) we can find vi ∈ F0,i, such that f0
is continuous at vi and {fn} are asymptotically equi-lower semicontinuous at vi. Hence the
epi-convergence of {fn} to f0 implies the pointwise convergence of fn(vi)→ f0(vi) = ai0,
meaning that an,i → a0,i for each i ∈ I0(E) . Because {a0,i, i ∈ I0(E)} is uniquely mini-
mized at i= i∗, for any ϵ > 0 such that for any sufficiently large n, we have an,i∗ < an,i + ϵ,
which means that the minimizer level setGn of fn is unique and equals to Fn,i∗. This together
with the result in the previous paragraph implies |1(v ∈ Gn)− 1(v ∈ G0)| → 0 for almost
surely v. The desired result (B.27) in Lemma B.4 then follows by applying the dominated
convergence theorem.

B.10. Proof of Lemma B.5.

PROOF. By (B.24), WT (u) can be written as WT (u) =
∑4

i=1(u
T

i E[XXT1{Z ∈
Ri(γ0)}]ui − 2uT

iHi,T ), where

Hi,T =
1√
T

T∑
t=1

Xtεt1{Zt ∈Ri(γ0)}.

Let a ∈ Rp with ‖a‖ = 1. Also let Ha,i,T = aTHi,T and σ2a,i = aTΣia
T, where Σi =

E[XXTε21{Z ∈ Ri(γ0)}]. Then with Assumptions 1.(ii) and 3.(i), by the martingale cen-

tral limit theorem (Hall and Heyde, 1980), it holds that σ−1
a,iHa,i,T

d−→ N(0,1). Hence, by

the Cramer-Wold device, we obtain Hi,T
d−→N(0,Σi), which implies that WT (u)

d−→W (u).
Since the stochastic component of WT (u) is linear in u, the stochastic equicontinuity of

WT (u) can be trivially proved. Hence WT
d−→W in ℓ∞(B).

We now show the asymptotic independence between WT (u) and DT (v). For indepen-
dence observations, it can be readily proved by the characteristic function approach used in
Yu (2012), which however may not be suitable for the dependence case. In this proof, we
employ the device established in Hsing (1995), which can be used to show the asymptotic
independence between the extreme type and sum type statistics for the mixing sequences. We
notice that while the original results in that paper were for univariate random variables, they
can be extended to multivariate cases with essentially the same proof.

As in Part 1 of the proof of Lemma B.2, we writeDT (v) =
∑2

l=1

∑
(j,k)∈S(l) T

(j,k)
l,vl

(
N̂

(j,k)
l,T

)
,

where N̂(j,k)
l,T is a point process defined in (B.46) and T (j,k)

l,vl
is a continuous functional. There-

fore, it suffices to show the asymptotic independence between N̂
(j,k)
l,T and Ha,i,T for any

a ∈Rp with ‖a‖= 1, l ∈ {1,2}, (j, k) ∈ S(l) and i ∈ {1, · · · ,4}. If one has

P
{
Ha,i,T /σa,i,t ≤ x, N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
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=P (Ha,i,T /σa,i,t ≤ x)P
{
N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
+ o(1), (B.83)

for any x ∈ R, positive integer s, non-negative integers {ki}si=1, and non-overlapping sets
{Fi = (F1i, F2i, F3i)}si=1 ∈ E(l), where E(l) is the basis of relatively compact open set in El
as used in Part 2 of Section B.7, then N̂

(j,k)
l,T is independent with Ha,i,T .

First, we verify Conditions (2.1) and (2.2) of Hsing (1995). Let ζt = (Tql,t,Z−1,l,t, ζ
(j,k)
t )

and BT,i = Fi for 1≤ i≤ s and BT,s+1 = ∩si=1B
c
T,i. Then,

limsup
T→∞

TP(ζt /∈BT,s+1)≤ limsup
T→∞

s∑
i=1

TP(ζt ∈BT,i)

=

s∑
i=1

µ
(j,k)
l (BT,i)<∞, (B.84)

where the equality is due to (B.49). Hence, Condition (2.1) of Hsing (1995) is ensured. In
addition, Condition (2.2) of the same paper also holds, since

lim
l→∞

limsup
T→∞

P
{
∪Tt=l(ζt /∈BT,s+1)|ζ1 /∈BT,s+1

}
= lim
l→∞

limsup
T→∞

P
{
∪Tt=l(ζt /∈BT,s+1)∩ (ζ1 /∈BT,s+1)

}
P(ζ1 /∈BT,s+1)

= lim
l→∞

limsup
T→∞

O(T−2)

O(T−1)
= 0,

where the denominator part is from (B.84) and the numerator is derived in the same way as
in (B.51).

We now show the desired (B.83) with similar arguments as in Theorem 2.2 of Hsing
(1995). Let ζ̃T = (ζ1, · · · , ζT )T. For any Ã = (A1, · · · ,AT ), the notation ζ̃T ∈ Ã stands for
ζt ∈ At for each 1 ≤ t ≤ T , and ζ̃T /∈ Ã otherwise. Let B̃T = {B̃ = (B1, · · · ,BT )}, where
each Bt ∈ {BT,1, · · · ,BT,s+1} for each 1≤ t≤ T . Also we let

B̃′
T =

{
B̃ ∈ B̃T :

T∑
t=1

1(Bt =BT,i) = ki, for 1≤ i≤ s

}
.

By such constructions, we have{
∪B̃∈B̃(ζ̃T ∈ B̃)

}
∩
{
N̂

(j,k)
l,T (BT,i) = ki,1≤ i≤ s

}
(i)
= ∪B̃∈B̃′ (ζ̃T ∈ B̃)

(ii)
=
{
N̂

(j,k)
l,T (BT,i) = ki,1≤ i≤ s

}
.

Also, we note that (i) implies that

0≤P
{
Ha,i,T /σa,i,t ≤ x, N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
− P

{
Ha,i,T /σa,i,t ≤ x,∪B̃∈B̃′(ζ̃T ∈ B̃)

}
≤P
{
∩B̃∈B̃(ζ̃T /∈ B̃)

}
. (B.85)

With the fact that the events {(ζ̃T /∈ B̃)}B̃∈B̃′ are disjoint, repeatedly applying Theorem 2.1
of Hsing (1995) leads to

P
{
Ha,i,T /σa,i,t ≤ x, N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
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(iii)
=
∑
B̃∈B̃′

P
{
Ha,i,T /σa,i,t ≤ x, ζ̃T ∈ B̃

}
+ o(1)

(iv)
= P(Ha,i,T /σa,i,t ≤ x)

∑
B̃∈B̃′

P
(
ζ̃T ∈ B̃

)
+ o(1)

=P(Ha,i,T /σa,i,t ≤ x)P
{
∪B̃∈B̃′(ζ̃T ∈ B̃)

}
+ o(1)

(v)
=P(Ha,i,T /σa,i,t ≤ x)P

{
N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
+ o(1),

where (iii) is because of (B.85) and (2.3) in Theorem 2.1 of Hsing (1995), (iv) is implied
by (2.4) in the same theorem, and (v) is due to the equivalence relationship (ii). Hence,
(B.83) is now verified. Since the above derivations hold for any a ∈ Rp with ‖a‖ = 1,
l ∈ {1,2}, (j, k) ∈ S(l) and i ∈ {1, · · · ,4}, we complete the proof for the asymptotic in-
dependence between WT (u) and DT (v).

APPENDIX C: PROOF FOR SECTION 4 AND ADDITIONAL ALGORITHMS

C.1. Proof of Theorem 4.1. The following proof is for Theorem 4.1 on the validity of
the MIQP.

PROOF. Let the criterion function of the MIQP be

VT (ℓ) =
1

T

T∑
t=1

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓk,i,t

)2

,

where ℓ= {ℓk,i,t : k = 1, · · · ,4, i= 1, · · · , p, t= 1, · · · , T}. The constraints of the MIQP are

1. βk ∈ B, γj ∈ Γ,

2. gj,t ∈ {0,1}, Ik,t ∈ {0,1},

3. Li ≤ βk,i ≤ Ui,

4. (gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t,

5.(i). Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi,

5.(ii). Li(1− Ik,t)≤ βk,i − ℓk,i,t ≤ Ui(1− Ik,t),

6. Ik,t ≤ s
(k)
j gj,t + (1− s

(k)
j )/2, Ik,t ≥

2∑
j=1

{
s
(k)
j gj,t + (1− s

(k)
j )/2

}
− 1,

for k = 1, · · · ,4, j = 1,2, i = 1, · · · , p and t = 1, · · · , T. Define g = {gj,t : j = 1,2, t =
1, · · · , T}, I = {Ik,t : k = 1, · · · ,4, t = 1, · · · , T}. The solution of the MIQP is denoted as
(β̄, γ̄, ḡ, Ī, ℓ̄) = argminβ,γ,g,I,ℓVT (ℓ).

To prove the theorem, it suffices to show that (i) MT (θ̄) = VT (ℓ̄), where θ̄ = (γ̄T, β̄T)T;
(ii) VT (ℓ̄)≥MT (θ̂); and (iii) MT (θ̂)≥VT (ℓ̄).

Proof of (i): It is sufficient to show that(
Yt −

4∑
k=1

XT

t β̄k1j(Z
T

1,tγ̄1,Z
T

2,tγ̄2)

)2

=

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓ̄k,i,t

)2

. (C.1)
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We show that ℓ̄k,i,t = β̄k,i1k(Z
T

1,tγ̄1,Z
T

2,tγ̄2). If 1k(ZT

1,tγ̄1,Z
T

2,tγ̄2) = 1, then by Constraints
2 and 6, we have Ik,t = 1, which implies that ℓ̄k,i,t = β̄k,i. If 1k(ZT

1,tγ̄1,Z
T

2,tγ̄2) = 0, then by
Constraints 2 and 6 we have Ik,t = 0, which implies that ℓ̄k,i,t = 0. Combining the two cases
verifies ℓ̄k,i,t = β̄k,i1k(Z

T

1,tγ̄1,Z
T

2,tγ̄2) for each k, i, t, which implies (C.1).

Proof of (ii): Note that

VT (ℓ̄) =MT (θ̄)≥ min
β∈A,γ∈G

MT (θ) =MT (θ̂),

where the first equality is by (i) and the last equality is by the definition of θ̂.

Proof of (iii): Define ℓ̂k,i,t = β̂k,iÎk,t, where Îk,t =
∏2
j=1 s

(k)
j ĝj,t and ĝj,t = 1{ZT

t γ̂j > 0}.

Then by definition MT (θ̂) = VT (ℓ̂), where ℓ̂ = {ℓ̂k,i,t}. If (β̂, γ̂, d̂, ℓ̂) satisfy Constraints
1-6 above, then by the definition of ℓ̄, we have VT (ℓ̂)≥ VT (ℓ̄) and hence, (iii) can be veri-
fied. Constraints 1-3 are ensured by the definitions. For Constraint 4, note that if ZT

j,tγ̂j > 0,
then by definition ĝj,t = I(ZT

j,tγ̂j > 0) = 1. Constraint 4 becomes 0 < ZT

j,tγ̂j ≤Mj,T =
supγ∈Γj

|ZT

j,tγ|, which is satisfied. When ZT

j,tγ̂j ≤ 0, then ĝj,t = 0. Condition 4 becomes
−Mj,t− ϵ <ZT

j,tγ̂j ≤ 0, which holds for any ϵ > 0. Hence, Condition 4 is verified. For Con-
dition 5, note that if Îk,t = 1, then ℓ̂k,i,t = β̂k,i by its definition, which meet the requirement
in Constraint 5 (i) and (ii). Otherwise, if Îk,t = 0, then ℓ̂k,i,t = 0, and Constraints 5 (i) and (ii)
are satisfied. For Constraint 6, it is ready to verify that

2∑
j=1

{
s
(k)
j ĝj,t + (1− s

(k)
j )/2

}
− 1≤

2∏
j=1

s
(k)
j ĝj,t ≤ s

(k)
j ĝj,t + (1− s

(k)
j )/2,

for any ĝ1,t, ĝ2,t ∈ {0,1} and s
(k)
1 , s

(k)
2 ∈ {−1,1}. In summary, (β̂, γ̂, d̂, ℓ̂) satisfies Con-

straints 1-6, implying that

MT (θ̂) =VT (ℓ̂)≥VT (ℓ̄),

which proves (iii). Combining parts (i), (ii) and (iii), we obtain MT (θ̂) = MT (θ̄), which
completes the proof of Theorem 4.1.

C.2. Block coordinate descent. The MIQP presented in Section 4 of the main paper
may be slow when the dimension of Xt and the sample size T are large. As an alternative,
we present a block coordinate descent (BCD) algorithm.

Iterate the following two steps until max1≤k≤4 ‖β̂s+1
k − β̂sk‖< η.

Step 1. For each given β̂s, solve the following mixed integer linear programming (MILP)
problem:

min
β,γ,g,I,ℓ

1

T

T∑
t=1

4∑
k=1

{
(XT

t β̂
s
k)

2 − 2YtX
T

t β̂
s
k

}
Ik,t (C.2)

subject to



γj ∈ Γj , gj,t ∈ {0,1}, Ik,t ∈ {0,1};

(gj,t − 1)(Mj,t + ϵ)<ZT

j,tγk ≤ gj,tMj,t, Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi;

Ik,t ≤ s
(k)
l gl,t +

1− s
(k)
l

2
, Ik,t ≥

2∑
l=1

(
s
(k)
l gl,t +

1− s
(k)
l

2

)
+ 1−L,

(C.3)
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for k = 1, · · · ,4, j = 1,2, i= 1, · · · , dx and t= 1, · · · , T. Let the solution be γ̂s+1.

Step 2. For the given γ̂s+1, obtain

β̂s+1
k = [ET {XtX

T

t 1(Zt ∈Rk(γ̂s+1)}]−1ET {YtXt1(Zt ∈Rk(γ̂s+1)}.

REMARK C.1. The advantages of the BCD compared with the MIQP are that the op-
timization with respect to γ in each iteration is a linear programming instead of quadratic
programming, and that for βk in each iteration has a close form solution. Therefore, the
BCD can significantly reduce computation cost. However, unlike the MIQP presented in the
main paper, there is no theoretical guarantee for the global optimality of the solutions of the
BCD. For the BCD, the specification of the initial value θ̂0 is important. In practice, it can
be obtained from a grid search procedure, or we can use the output of the MIQP after several
iterations as the initial value for the BCD.

The following Table S1 reports the comparison between the joint MIQP algorithm pro-
posed in Section 4 of the main paper and the block coordinate descent algorithm presented
in Section C.2. The sample was generated according to

Yt =

4∑
k=1

XT

t βk01k(Z
T

1,tγ10,Z
T

2,tγ20) + εt t= 1, · · · , T

where Xt = (X̃T

t ,1)
T with X̃t = (X1,t, · · · ,Xp−1,t)

T and Zj,t = (Z̃T

j,t,1)
T with Z̃j,t =

(Zj,1,t, · · · ,Zj,d−1,t)
T for j = 1,2, and the residuals εt = σ(Xt,Zt)et with σ(Xt,Zt) =

1+0.1X2
1,t+0.1Z2

1,1,t and {et}Tt=1 being generated independently from the standard normal
distribution and being independent of {Xt,Zt}Tt=1. Let Vt = (X̃T

t , Z̃
T

1,t, Z̃
T

2,t)
T. We gener-

ated {Vt}Tt=1
i.i.d.∼ N(0,ΣV ), where ΣV = (σij)i,j=1,··· ,7 with σii = 1 and σij = 0.1 if i 6= j.

We considered two sets of dimensions for Xt and Zt. For p = 4 and d = 3, the regres-
sion coefficients of the four regimes were β10 = (1,1,1,1)T,β20 = (−3,−2,−1,0),β30 =
(0,1,3,−1)T and β40 = (2,−1,0,2)T, and the two boundary coefficients γ10 = (1,−1,0)T

and γ20 = (1,1,0)T, respectively. For p = 10 and d = 6, the regression coefficients of
the four regimes were β10 = (1,1,1,1,1,0, · · · ,0)T,β20 = (−3,−2,−1,1,0, · · · ,0),β30 =
(0,1,3,−1,1,0, · · · ,0)T and β40 = (2,−1,0,2,1,0, · · · ,0)T, and the two boundary coeffi-
cients γ10 = (1,−1,−1,−1,0,0)T and γ20 = (1,1,1,1,0,0)T, respectively. The simulation
experimented four sample sizes: {200,400,800,1600}, and the experiments were repeated
500 times for each sample size. The initial values for the BCD were set as the outputs of the
MIQP after 5 log(T ) iterations. The stopping criterion parameter was specified as η = 10−4.

Table S1 shows that the estimation errors of both γ0 and β0 obtained with the BCD were
slightly larger than those with the MIQP, while their discrepancies were shrinking as T in-
creased. The running time of the BCD, on the other hand, was significantly shorter than that
of the joint MIQP, especially when the dimensions and sample sizes were large, because of
the reasons we discussed above and in the main paper. Therefore, it is advocated to use the
iterative BCD for large dimensions and sample sizes. However, it should also be noted that it
is crucial to choose a good initial value for the BCD for its success. In the above simulations,
we used the outputs of the MIQP after several iterations to ensure the quality of the initial
values, as poor initial values can lead to large estimation errors.

C.3. MIQP for the three-regime models. The MIQP algorithms are not only suitable
for solving the LS problem of the four-regime segmented regression but can also be extended
to other segmented regressions. In Section 7.2 of the main paper we have reported simulation
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TABLE S1
Empirical average estimation errors ∥γ0 − γ̂∥2 and ∥β0 − β̂∥2 (multiplied by 10), and running time (in
second) obtained with the joint MIQP algorithm and the block coordinate descent (BCD) algorithm. The

numbers inside the parentheses are the standard errors of the simulated averages.

p= 4, d= 3 p= 10, d= 6

T
MIQP BCD MIQP BCD

γ̂ β̂ Time γ̂ β̂ Time γ̂ β̂ Time γ̂ β̂ Time

200
1.00 6.02 65.3 1.13 6.03 7.7 3.15 10.93 149.1 3.31 11.17 10.0

(0.59) (1.15) (11.3) (0.62) (1.14) (1.2) (1.83) (2.40) (15.3) (1.88) (2.49) (1.9)

400
0.51 4.08 364.1 0.59 4.11 14.3 1.59 7.78 583.6 1.66 7.85 23.9

(0.31) (0.76) (27.9) (0.28) (0.79) (3.1) (0.92) (1.51) (40.1) (0.98) (1.63) (6.4)

800
0.25 2.84 1157.7 0.27 2.85 48.9 0.78 5.20 1817.3 0.82 5.31 69.0

(0.15) (0.49) (53.2) (0.14) (0.47) (7.0) (0.41) (0.82) (89.4) (0.43) (0.84) (11.4)

1600
0.13 2.00 2792.2 0.14 2.00 162.4 0.38 3.61 4502.9 0.40 3.67 208.1

(0.07) (0.37) (162.0) (0.07) (0.38) (12.1) (0.19) (0.57) (217.5) (0.18) (0.58) (21.4)

results under segmented models with less than four regimes to compare the four-regime es-
timation under misspecifications with the estimation with correctly specified models, where
the corresponding MIQPs for less than four regimes models were applied. In this subsection,
we present MIQP formulations for the three-regime models with and without intersections.
The MIQP for the two-regime model was proposed in Lee et al. (2021).

(i) MIQP for the three-regime model with non-intersected boundaries.

Let g = {gj,t : j = 1,2, t = 1, · · · , T}, I = {Ik,t : k = 1,2,3, t = 1, · · · , T} and ℓ =
{ℓk,i,t : k = 1,2,3, i= 1, · · · , p, t= 1, · · · , T}. Consider solving the following problem

min
β,γ,g,I,ℓ

1

T

T∑
t=1

(
Yt −

3∑
k=1

p∑
i=1

Xi,tℓk,i,t

)2

,

subject to



βk ∈ B, γj ∈ Γ, gj,t ∈ {0,1}, Ik,t ∈ {0,1}, Li ≤ βk,i ≤ Ui;

(gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t;

gj,tLi ≤ ℓj,i,t ≤ gj,tUi, I2,tLi ≤ ℓ2,i,t ≤ I2,tUi;

Li(1− gj,t)≤ βk,i − ℓj,i,t ≤ Ui(1− gj,t);

Li(1− I2,t)≤ β2,i − ℓ2,i,t ≤ Ui(1− I2,t);

I2,t ≤ g1,t, I2,t ≤ 1− g2,t, I2,t ≥ g1,t − g2,t,

for k = 1,2,3, j = 1,2, i= 1, · · · , p and t= 1, · · · , T.

(ii) MIQP for the three-regime model with intersected boundaries.

Let g = {gj,t : j = 1,2, t = 1, · · · , T}, I = {Ik,t : k = 1,2,3, t = 1, · · · , T} and ℓ =
{ℓk,i,t : k = 1, · · · ,3, i= 1, · · · , p, t= 1, · · · , T}. Solve the following problem:

min
β,γ,g,I,ℓ

1

T

T∑
t=1

(
Yt −

3∑
k=1

p∑
i=1

Xi,tℓk,i,t

)2

, (C.4)
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subject to



βk ∈ B, γj ∈ Γ;

gj,t ∈ {0,1}, Ik,t ∈ {0,1};

Li ≤ βk,i ≤ Ui

(gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t;

g1,tLi ≤ ℓ1,i,t ≤ g1,tUi, Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi

Li(1− g1,t)≤ βk,i − ℓ1,i,t ≤ Ui(1− g1,t);

Li(1− Ik,t)≤ βk,i − ℓk,i,t ≤ Ui(1− Ik,t);

I2,t ≤ 1− g1,t, I2,t ≤ 1− g2,t, I2,t ≥ 1− g1,t − g2,t;

I3,t ≤ g1,t, I3,t ≤ 1− g2,t, I3,t ≥ g1,t − g2,t,

for k = 1,2,3, j = 1,2, i= 1, · · · , p and t= 1, · · · , T.

APPENDIX D: PROOFS FOR SECTION 5

In this section, we analyze the validity of the proposed smoothed regression bootstrap for
the inference of the boundary coefficient γ0 and the regression coefficient β0. Our proofs
include two parts. In Section D.1, we presents some conditions for a general bootstrap pop-
ulation, under which the consistency of the bootstrap is shown. In Section D.2, we verify
the proposed smoothed regression bootstrap satisfies these conditions, and hence establish its
consistency.

D.1. Sufficient conditions for a consistent bootstrap for the segmented regressions.
Given a sample DT from the model of segmented regression (2.1) of the main paper, suppose
the LSE for β0 obtained with DT is β̂ = (β̂T

1 , · · · , β̂T

4 )
T, and the centriod of the LSEs for γ0

is γ̂c. To simplify notations, in this section we use γ̂ for γ̂c. Let θ̂ = (γ̂, β̂). The model to
generate the bootstrap resamples is

Y =

4∑
k=1

XTβ̂k1{Z ∈Rk(γ̂c)}+ ε, (D.1)

where (X,Z, ε)∼ Q̂h, which generate the bootstrap population that mirrors the population
distribution P0 that generates the original sample DT . Let {Y ∗

i ,X
∗
i ,Z

∗
i }
mT

i=1 be a bootstrap
resample from (D.1), we denote by Q̂∗

h as its empirical measure. The LSEs obtained with the
bootstrap resample are θ̂∗ = (γ̂∗, β̂∗) such that

Q̂∗
h{m(W ∗, θ̂∗)}=min

θ∈Θ
Q̂∗
h{m(W ∗,θ)}

=min
θ∈Θ

1

mT

mT∑
i=1

[Y ∗
i − {

4∑
k=1

X∗
i βk1(Z

∗
i ∈Rk(γ)}]2. (D.2)

Let the bootstrap LSE set for γ be Ĝ∗, whose centriod is denoted as γ̂∗c.

The sufficient conditions for a consistent boostrap for the segmented regressions are listed
as follows.

(C1) [Consistency] θ̂→ θ0.
(C2) [Moment conditions] limsupT→∞Q̂h(‖X‖4)<∞ and limsupT→∞Q̂h(ε

4)<∞.
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(C3) Q̂h(εQ|X,Z) = 0 and Q̂h(ε
2
Q)→ P0(ε

2).
(C4) Suppose that U(X,Z) is a function of (X,Z) with P0{|U(X,Z)|}<∞, then

sup
R⊂Z

∣∣∣Q̂h{U(X,Z)1(Z ∈R)} − P0{U(X,Z)1(Z ∈R)}
∣∣∣→ 0. (D.3)

(C5) There exist some constants δ1 and c1 > 0 such that for each l = 1 and 2 and any ϵ ∈
(0, δ1), it holds that Q̂h{1(|ql|< ϵ)|Z−1,l}> c1ϵ almost surely.

(C6) There exists some constant r > 8 such that for each l= 1 and 2, there exists a neighbor-
hood Nl for γl0 such that supγ∈Nl

Q̂h(‖X‖r|ZT

l γ = 0)<∞, infγ∈Nl
Q̂h(‖X‖|ZT

l γ =

0)> 0 and supγ∈γl
Q̂h(ε

r|ZT

l γ = 0)<∞.
(C7) For each l ∈ {1,2}, as T →∞ the following hold.

(i) Let f̃Zl
be the density function of Zl under Q̂h and fZl

be the density function of
Zl under P0, then ‖f̃Zl

− fZl
‖∞ → 0;

(ii) For each (j, k) ∈ S(l),

Q̂h

{
eitξ

(j,k)
Q |ql,Q = 0,Z−1,l

}
→ P0

{
eitξ

(j,k) |ql = 0,Z−1,l

}
almost surely. (D.4)

(iii) Under Q̂h, the conditional density f̃ξ(j,k)
Q |(ql,Q,Z−1,l)

(ξ|q,z) and f̃ql,Q|Z−1,l
(q|z) are

continuous at q = 0 and bounded by some 0<F <∞ for any ξ ∈R and z ∈Z−1,l;

The following Lemmas D.1–D.5 will establish that under Conditions (C1)–(C7), the
asymptotic distributions of the bootstrap estimators are the same as that of the estimators
obtained with the sample DT . The proofs essentially mimics that in Section B, while re-
quire careful verification for the validity of replacing (P0,θ0) with its bootstrap counterpart
(Q̂h, θ̂).

LEMMA D.1. Assume that Assumptions 1-5 and Conditions (C1)–(C4) hold, then θ̂∗ P−→
θ0.

PROOF. First, we show supθ∈Θ

∣∣∣Q̂h {m(W ,θ)} − P0 {m(W ,θ)}
∣∣∣→ 0. For any θ, un-

der Q̂h where Y =
∑4

k=1X
Tβ̂1{Z ∈R(γ̂)}+ ε,

Q̂h{m(W ,θ)}= Q̂h(ε
2
Q)

+

4∑
k=1

Q̂h[{XT(βk − β̂k)}21(k)(γ̂)1(k)(γ)] +
∑
k ̸=j

Q̂h[{XT(βj − β̂k)}21(k)(γ̂)1(j)(γ)]

+ 2

4∑
k=1

Q̂h[εX
T(βk − β̂k)1(k)(γ̂)1(k)(γ)] + 2

∑
k ̸=j

Q̂h[εX
T(βj − β̂k)1(k)(γ̂)1(j)(γ)]

=:AQ +B1,Q(θ) +B2,Q(θ) +C1,Q(θ) +C2,Q(θ), say.

Similarly, under P0 where Y =
∑4

k=1X
Tβ01

(k)(γ0) + ε,

P0{m(W ,θ)}= P0(ε
2)

+

4∑
k=1

P0[{XT(βk −β0,k)}21(k)(γ0)1
(k)(γ)] +

∑
k ̸=j

P0[{XT(βj −β0,k)}21(k)(γ0)1
(j)(γ)]
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+ 2

4∑
k=1

P0[εX
T(βk −β0,k)1

(k)(γ0)1
(k)(γ)] + 2

∑
k ̸=j

P0[εX
T(βj −β0,k)1

(k)(γ0)1
(j)(γ)]

=:AP +B1,P (θ) +B2,P (θ) +C1,P (θ) +C2,P (θ), say.

Therefore, it suffices to show that AQ → AP , supθ∈Θ |Bi,Q(θ) − Bi,P (θ)| → 0 and
supθ∈Θ |Ci,Q(θ)−Ci,P (θ)| → 0 for i= 1,2. The first part AQ →AP is because of Condi-
tion (C3). Denote B1,Q(θ) =

∑4
k=1B1,k,Q and B1,P (θ) =

∑4
k=1B1,k,P . Then for each k,

using the triangle inequality, we obtain

|B1,k,Q(θ)−B1,k,P (θ)| ≤D1(θ) +D2(θ) +D3(θ), (D.5)

where

D1(θ) =
∣∣∣Q̂h[{XT(βk − β̂k)}21(k)(γ̂)1(k)(γ)]− Q̂h[{XT(βk −β0,k)}21(k)(γ̂)1(k)(γ)]

∣∣∣ ,
D2(θ) =

∣∣∣Q̂h[{XT(βk −β0,k)}21(k)(γ̂)1(k)(γ)]− Q̂h[{XT(βk −β0,k)}21(k)(γ0)1
(k)(γ)]

∣∣∣ ,
D3(θ) =

∣∣∣Q̂h[{XT(βk −β0,k)}21(k)(γ0)1
(k)(γ)]− P0[{XT(βk −β0,k)}21(k)(γ0)1

(k)(γ)]
∣∣∣ .

For D1(θ), it can be bounded by

sup
θ∈Θ

D1(θ)≤ sup
θ∈Θ

Q̂h

∣∣∣∣{XT(βk − β̂k)
}2

− {XT(βk −β0,k)}2
∣∣∣∣

=sup
θ∈Θ

Q̂h

∣∣∣{XT

(
2βk − β̂k −β0,k

)}{
XT

(
β0,k − β̂k

)}∣∣∣
≤
√

Q̂h

{
XT

(
β0,k − β̂k

)}2
sup
θ∈Θ

√
Q̂h

{
XT

(
2βk − β̂k −β0,k

)}2
, (D.6)

where (D.6) converges to 0 is because its first term converges to 0 by β0,k → β̂k and Cauchy-
Schwartz inequality, and its second term is uniformly bounded since limsupT Q̂h

{
‖X‖4

}
<

∞ and Θ is compact. For D2(θ),

D2(θ)≤Q̂h

∣∣∣{XT(βk −β0,k)}2 1(k)(γ)
{
1(k)(γ̂)− 1(k)(γ0)

}∣∣∣√
Q̂h

[
{XT(βk −β0,k)}4

]√
Q̂h

{∣∣1(k)(γ̂)− 1(k)(γ0)
∣∣}, (D.7)

where the first term on the right-hand side is uniformly bounded and the second term
converges to zero by the dominated convergence theorem and γ̂ → γ0 in (C1), we have
supθ∈ΘD2(θ)→ 0. For D3(θ), let δi be the i-th element of βk −β0,k, then

D3(θ)≤
∑
i,j∈[p]

δiδj

∣∣∣Q̂h

{
XiXj1

(k)(γ0)1
(k)(γ)

}
− P0

{
XiXj1

(k)(γ0)1
(k)(γ)

}∣∣∣ .
By the compactness of Θ, δiδj is uniformly bounded. Then from (D.3) in (C4), we obtain
supθ∈ΘD3(θ)→ 0. By (D.5) and triangle inequality, supθ∈Θ |B1,k,Q(θ)−B1,k,P (θ)| → 0.
Summing accross k results in supθ∈Θ |B1,Q(θ)−B1,P (θ)| → 0.

With the same argument as above except for replacing βk by βj and 1(k)(γ) by 1(j)(γ),
we can show supθ∈Θ |B2,Q(θ)−B2,P (θ)| → 0. Similarly, using the above decomposi-
tion argument and with Conditions (C2), (C4) and (C1), it can be readily shown that
supθ∈Θ |Ci,Q(θ)−Ci,P (θ)| → 0 for i= 1,2. Combining the above pieces gives

sup
θ∈Θ

∣∣∣Q̂h {m(W ,θ)} − P0 {m(W ,θ)}
∣∣∣→ 0. (D.8)
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Because (i) Q̂∗
h is the empirical measure of Q̂h, (ii) Q̂h {supθ∈Θm(W ,θ)} <∞ by the

condition (C2) and the compactness of Θ, and (iii) F = {m(w,θ),θ ∈Θ} has a finite VC-
dimension, the Glivenko-Cantelli theorem implies that

sup
θ∈Θ

∣∣∣Q̂∗
h {m(W ∗,θ)} − Q̂h {m(W ,θ)}

∣∣∣ P−→ 0. (D.9)

Consequently, from (D.8) and (D.9) we have

sup
θ∈Θ

∣∣∣Q̂∗
h {m(W ∗,θ)} − P0 {m(W ,θ)}

∣∣∣ P−→ 0. (D.10)

Because of (D.10) together with the facts that θ 7→ P0 {m(W ,θ)} is continuous and θ0 is the
unique minimizer of P0 {m(W ,θ)} as established in Appendix B, it follows that θ̂∗ P−→ θ0
using the similar arguments as in Section B.2.

LEMMA D.2. Assume that Assumptions 1-5 and Conditions (C1)–(C6) hold. Then√
mT (β̂

∗ − β̂) =Op(1) and mT (γ̂
∗ − γ) =Op(1).

Proof. From Lemma D.1 we know that β̂∗ − β̂ = op(1) and γ̂∗ − γ = op(1). The proof of
the convergence rate of β̂∗ and γ̂∗ is analogous to the proof of β̂ and γ̂ in Appendix B.

First, because of the conditional zero mean condition of ε in (C3), we can decompose
Q̂h {m(W ,θ)−m(W ,θQ)} as

Q̂h {m(W ,θ)−m(W ,θQ)}=
4∑
j=1

Q̂h[{XT(β̂j −βj)}21(j)(γ̂)1(j)(γ)]

+

4∑
i=1

4∑
k ̸=i

Q̂h[(X
T (βQ,i −βk))2 1(i)(γ̂)1(k)(γ)]

=:

4∑
j=1

JQj (θ) +

4∑
i=1

4∑
k ̸=i

GQik(θ), say. (D.11)

Because γ̂→ γ0 and (D.3), it can be shown that

sup
i,j∈[p]

sup
γ∈Γ

∣∣∣Q̂h

{
XiXj1

(j)(γ̂)1(j)(γ)
}
− P0

{
XiXj1

(j)(γ0)1
(j)(γ)

}∣∣∣→ 0, (D.12)

following similar arguments as for D2(θ) and D3(θ) in the previous lemma. Since the small-
est eigenvalue of P0

{
XXT1(j)(γ0)1

(j)(γ)
}

is uniformly bounded away from 0, (D.12) im-
plies that the smallest eigenvalue of Q̂h

{
XXT1(j)(γ̂)1(j)(γ)

}
is uniformly bounded away

from 0 if γ is in some neighborhood of γ0, for T ≥ T0 with some T0 > 0, because the entry-
wise convergence of matrices can imply the convergence of eigenvalues, which can be easily
seen from the perspective of characteristic polynomials. This implies that

JQj (θ)≥ ‖β̂j −βj‖2,

for j ∈ {1, · · · ,4} and T ≥ T0.
With Conditions (C4) and (C5), which imply that Assumptions 3.(ii), 4.(i) and 4.(iii) hold

when replacing P with Q̂h, the moment inequalies in Lemma A.2 hold under the bootstrap
population Q̂h. Then, with the same argument as in Step 1 of the proof of Theorem 3.1, it
can be shown that for any γ in some neighborhood of γ̂,

JQkl (θ) + JQil (θ)

2
+GQilkl(θ) +GQklil(θ)≳

(
‖βQ,il −βil‖2 + ‖βQ,kl −βkl‖2 + ‖γ̂l − γl‖

)
,
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where kl and il are defined the same as in Appendix B, which further implies

Q̂h {m(W ,θ)−m(W ,θQ)}≳ ‖β̂−β‖2 + ‖γ̂ − γ‖, (D.13)

for γ in some neighborhood of γ̂.
Let G∗

T =
√
mT (Q̂∗

h − Q̂h). By inspecting the proofs of Lemmas A.4–A.6, we notice that
these lemmas can be established once we have the moment inequalities outlined in Lemma
A.3, whose conditions hold if we replace the population P0 by Q̂∗

h. Therefore, we can replace
GT in Lemma A.6 by G∗

T , under Conditions (C4)–(C6). Then, with the same arguments as
in Step 2 in Section B.4, we obtain

‖β̂∗ −β‖2 + ‖γ̂∗ − γ‖≲ ‖β̂∗ − β̂‖2op(1) + 4λ‖γ̂∗ − γ̂‖+Op(m
−1
T ),

for any λ ∈ (0,1), which implies that ‖β̂∗ − β̂‖2 = Op(m
−1
T ), and thus ‖γ̂∗ − γ̂‖ =

Op(m
−1
T ).

We now proceed to derive a result similar to Lemma B.1.

LEMMA D.3. Assume that Assumptions 1-5 and Conditions (C1)–(C6) hold. Then uni-
formly for h= (uT,vT)T in any compact set in R4p+d1+d2 ,

mT Q̂∗
h

{
m(W ∗, β̂+

u
√
mT

, γ̂ +
v

mT
)−m(W , β̂, γ̂)

}
=D∗

T (v)− 2W ∗
T (u) + oP (1), (D.14)

where

W ∗
T (u) =

4∑
j=1

[√
mT Q̂∗

h

{
uT

jXεQ1
(j)(γ̂)

}
+uT

j Q̂h

{
XXT1(j)(γ̂)

}
uj

]
,

and

D∗
T (v) =

2∑
l=1

∑
(j,k)∈S(l)

mT Q̂∗
h

[
ξ
(j,k)
Q 1

{
s
(j)
l

(
mT ql,Q +ZT

−1,lv−1,l

)
≤ 0< s

(j)
l mT ql,Q

}]
,

with ξ
(j,k)
Q =

(
δ̂T

jkXX
Tδ̂jk + 2XTδ̂jkεQ

){
1(j)(γ̂) + 1(k)(γ̂)

}
,

where δ̂jk = β̂j − β̂k, ql,Q =ZT

l γ̂l, S(l) is the set of indices of adjacent regions split by the
l-th hyperplane as defined in (3), and s(j)l = sign(zTγl0) for z ∈D(j)(γ0) as defined in (2).

Proof. The left-hand side of (D.14) can be decomposed in the same way as (B.32) in the proof
of Lemma B.1. It is noted that Lemma B.1 is established by showing the decomposed terms
in (B.32) besides DT (v) and WT (u) all converge to 0 in probability with the application of
Lemma A.5. With Conditions (C4)–(C6), Lemma A.4 holds with GT replaced by G∗

T . It can
be derived with similar lines of the proof of Lemma A.5 that

sup
∥γl−γQ,l∥≤m−1

T

√
mT Q̂∗

h {U |1j(γj)− 1j(γQ,j)| |1l(γl)− 1l(γ̂l)|}= op(1),

sup
∥γj−γQ,j∥≤m−1

T

∥γl−γQ,l∥≤m−1
T

mT Q̂∗
h {U |1j(γj)− 1j(γQ,j)| |1l(γl)− 1l(γ̂l)|}= op(1), (D.15)
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for U = ‖X‖2 and U = |εQ|‖X‖. Then, the above lemma can be proved by following the
same arguments as in Section B.6.

LEMMA D.4. Assume that Conditions (C1)–(C7) hold. Then the finite-dimensional weak
limit of D∗

T (v) is the same as D(v) as presented in Lemma B.2.

Proof. The derivation of the finite-dimensional weak limit of D∗
T (v) is in parallel to that of

DT (v) in the proof of Lemma B.2.
First, as (B.48) in Part 1, D∗

T (v) can be expressed as a sum of functionals of some em-
pirical point processes. For each l ∈ {1,2} and (j, k) ∈ S(l), we define an empirical point
process N̂(j,k)

Q,l,T (·) ∈Mp(El), where El =Rs(j)l
×Z−1,l ×R as:

N̂
(j,k)
Q,l,T (F ) :=mT Q̂∗

h

[
1
{
(mT ql,Q,Z−1,l, ξ

(j,k)
Q ) ∈ F

}]
, (D.16)

for each F = (F1,F2,F3) ∈El. Then D∗
T (v) can be expressed as

D∗
T (v) =

2∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
. (D.17)

where the functional T (j,k)
l,vl

is defined in (B.47).

Second, we derive the weak limit of N̂(j,k)
Q,l,T as in Part 2 of the proof of Lemma B.2. The two

ingredients are the calculation of the limit of Q̂h

{
N̂

(j,k)
Q,l,T

}
, which is required in Kallenberg’s

theorem, and the application of Meyer’s theorem. First, for any F = (F1,F2,F3) ∈ El, the
basis of relatively compact open set in El, we claim that:

lim
T,mT→∞

Q̂h

{
N̂

(j,k)
Q,l,T

}
= µ

(j,k)
l (F ), (D.18)

where the mean measure µ(j,k)l is defined in (B.50). This can be shown as below. Note that

Q̂h

{
N̂

(j,k)
Q,l,T

}
=mT Q̂h

[
1
{
(mT ql,Q,Z−1,l, ξ

(j,k)
Q ) ∈ F

}]
=mT

∫
mT q∈F1,z∈F2,ξ∈F3

f̃
(i,j)
Q (q,z, ξ)dqdzdξ

=

∫
q̃∈F1,z∈F2,ξ∈F3

f̃
(i,j)
Q

(
q̃

mT
,z, ξ

)
dq̃dzdξ,

where f̃ (i,j)Q (q,z, ξ) is the joint density function of (ql,Q,Z−1,l, ξ
(i,j)
Q ) under Q̂h. The claim

(D.18) can be verified as follows.∫
q̃∈F1,z∈F2,ξ∈F3

f̃
(i,j)
Q

(
q̃

mT
,z, ξ

)
dq̃dzdξ

=

∫
q̃∈F1,z∈F2,ξ∈F3

f̃ξ(j,k)
Q |(ql,Q,Z−1,l)

(
ξ| q̃
mT

,z

)
f̃ql,Q|Z−1,l

(
q̃

mT
|z
)
f̃Z−1,l

(z)dq̃dzdξ

(i)→
∫
q̃∈F1,z∈F2,ξ∈F3

f̃ξ(j,k)
Q |(ql,Q,Z−1,l)

(ξ|0,z) f̃ql,Q|Z−1,l
(0|z) f̃Z−1,l

(z)dq̃dzdξ (as mT →∞)

=

∫
q̃∈F1,z∈F2

Q̂h

{
ξ
(j,k)
Q ∈ F3|ql,Q = 0,Z−1,l = z

}
f̃ql,Q|Z−1,l

(0|z) f̃Z−1,l
(z)dq̃dz
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(ii)→
∫
q̃∈F1,z∈F2

P0

{
ξ(j,k) ∈ F3|ql = 0,Z−1,l = z

}
fql|Z−1,l

(0|z)fZ−1,l
(z)dq̃dz (as T →∞)

=

∫
q̃∈F1,z∈F2,ξ∈F3

fξ(i,j)|(ql,Z−1,l) (ξ | 0,z)fql|Z−1,l
(0 | z)fZ−1,l

(z)dq̃dzdξ

=µ
(j,k)
l (F ),

where (i) is implied by the dominated convergence theorem because of the continu-
ity and boundness of f̃ξ(j,k)

Q |(ql,Q,Z−1,l)
(ξ|q,z) and f̃ql,Q|Z−1,l

(q|z) at q = 0 as assumed

in (C7). For (ii), since the characteristic function of ξ
(i,j)
Q |ql,Q,Z−1,l under Q̂h con-

verges to that of ξ(i,j)|ql,Z−1,l under P0, then Q̂h

{
ξ
(j,k)
Q ∈ F3|ql,Q = 0,Z−1,l = z

}
→

P0

{
ξ(j,k) ∈ F3|ql = 0,Z−1,l = z

}
. In addition, it is easy to see that

sup
z∈Z−1,l

∣∣∣f̃ql,Q|Z−1,l
(0|z) f̃Z−1,l

(z)− fql|Z−1,l
(0|z)fZ−1,l

(z)
∣∣∣→ 0

as T →∞, due to ‖f̃Zl
− fZl

‖∞ → 0 assumed in (C7). Then (ii) follows from the dominated
convergence theorem.

Since observations under Q̂∗
h are i.i.d., for any F with µ(j,k)l (F ) > 0, Meyer’s theorem

implies that

lim
mT→∞

Q̂h

{
1
(
N̂

(j,k)
Q,l,T = 0

)}
= e−µ

(j,k)
l (F ). (D.19)

For F with µ
(j,k)
l (F ) = 0, (D.19) also holds, since in such the case (D.18) implies

Q̂h

{
N̂

(j,k)
Q,l,T (F )

}
→ 0 as T →∞, which further implies that Q̂h

{
1
(
N̂

(j,k)
Q,l,T = 0

)}
= 1 =

e−µ
(j,k)
l (F ). Since µ(j,k)l is the mean measure of N

(j,k)
l introduced in Part 2 of the proof

of Lemma B.2, with the statements (D.18) and (D.19), Kallenberg’s theorem (Lemma A.7)
implies that for each l ∈ {1,2} and (j, k) ∈ S(l), we have N̂

(j,k)
Q,l,T ⇒ N

(j,k)
l in Mp(El) as

mT , T →∞. Therefore, N̂(j,k)
Q,l,T has the same weak limit as N̂(j,k)

l,T .

As derived in Part 3 of the proof of Lemma B.2, the point process N
(j,k)
l has the repre-

sentation (B.55). By inspecting Part 4 of the proof of Lemma B.2 which shows the asymp-
totical independence of

(
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
, we find that to show the asymp-

totical independence of
(
N̂

(j,k)
Q,l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
, it suffices to show that (B.59)

holds if P is replaced by Q̂h, which is indeed true since ‖f̃Z − fZ‖∞ → 0 and the uni-
form boundness of f(ql,ql′ )|(Z−1,l,Z−1,l′ )(q, q

′) at a neighborhood of (0,0) implies the uniform
boundness of f̃(ql,Q,ql′,Q)|(Z−1,l,Z−1,l′ )(q, q

′) at the neighborhood, which ensures (B.59) holds
when replacing P is replaced by Q̂h. The rest arguments in Part 3 of the proof of Lemma
B.2 obviously hold under Q̂h and Q̂∗

h, since the observations under PT are weakly depen-
dent and the observations under Q̂∗

h are i.i.d. Therefore, the asymptotical independence of(
N̂

(j,k)
Q,l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
can be established.

As for adapting Part 4 of the proof of Lemma B.2, it is sufficient to verify that (I)–(III)
therein hold under Q̂h. Let

RQ,T = T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
and RQ,T,M =

∫
El,M

g
(j,k)
l (x,y, z)dN̂

(j,k)
Q,l,T (x,y, z).
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For (I), the arguments, which is mainly the continuous mapping theorem, for showing
RT,M ⇒R0,M also implies RQ,T,M ⇒R0,M , since the probability of discontinuities is eval-
uated under the distribution of the limiting process N(j,k)

l . For (II), with the notations in (II)
in Part 4 of the proof of Lemma B.2, we first have

|RQ,T −RQ,T,M |=mT Q̂∗
h

{
|ξ|1 (|ξ| ≥M)1

(
mT qQ,l +Z

T

−1v−1,l ≤ 0<mT qQ,l
)}

=:mT Q̂∗
h(GQ(M)), say. (D.20)

With Condition (C4) we have Q̂h

{∣∣∣ξ(j,k)Q

∣∣∣4 |ZT

l γ = 0

}
< C for some C <∞ if γ is in

some neighborhood of γ̂l and each l ∈ {1,2}. As in (B.74) it can be readily shown that Q̂h

Q̂h {|ξ|1 (|ξ| ≥M) |ZT

l γ = 0}=O(M−1). (D.21)

Using (D.21) and with the similar arguments as in the proof of Lemma A.4 (i), we can show
that which implies Q̂h {|Gt(M)|}=O((MmT )

−1) , which implies Q̂h {|RQ,T −RQ,T,M |}=
O(M−1) due to (D.21). Then

lim
M→∞

limsup
T→∞

Q̂h {|RQ,T −RQ,T,M |> ε}→ 0,

for any ε > 0 according to the Markov inequality, which verifies (II). Since (III) in
Part 4 of the proof of Lemma B.2 is for the truncation error of R0 = T (j,k)

l,vl

(
N

(j,k)
l,T

)
,

which is regardless of P0 or Q̂h, it also holds under the bootstrap scenario. There-
fore, with (I)–(III) and by applying Theorem 4.2 of Billingsley (1968), RT,Q ⇒ R0

as mT ,→ ∞, i.e., T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
⇒ T (j,k)

l,vl

(
N

(j,k)
l,T

)
. Because it has been shown that(

N̂
(j,k)
Q,l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
are asymptotically independent, we conclude that

D∗
T (v) =

L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
⇒

L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N

(j,k)
l,T

)
, (D.22)

as mT , T →∞, where the right-hand side of (D.22) is identical to that of (B.77), which is
the weak limit of DT (v), the proof is completed.

Let γ̂∗c = C(Ĝ∗) be the centriod of the LSEs γ̂∗ obtained with the bootstrap resample.
Let L∗

T be the distribution of {mT (γ̂
∗c − γ̂c),√mT (β̂

∗ − β̂)} and LT be the distribution of
{T (γ̂c − γ0),

√
T (β̂ − β0)}. The s.e-l-sc of {D∗

T } can be obtained with the same proof as
for Lemma B.3. With the same arguments as the proof for Theorem 3.3, we can establish that
L∗
T has the same limiting distribution as that of LT , which implies the following result.

LEMMA D.5. Assume that Conditions (C1)–(C7) hold, then ρ(L∗
T ,LT )→ 0 as T,mT →

∞, for any metric ρ that metrizes weak convergence of distributions.

D.2. Proof of Theorem 5.1.

PROOF. To show the validity of the smoothed regression bootstrap, we just need to verify
Conditions (C1)–(C7) hold with the probability approaching 1, conditionally on the data
{Wt = (Yt,Xt,Zt)}Tt=1, where under the bootstrap distribution Q̂h, the bootstrap sample
(X∗,Z∗)∼ F̃ (x,z), whose density function is the nonparametric density estimator f̃(x,z).
First, under Assumptions 6.(i) and (iii), we have ‖f̃(x,z)−f(x,z)‖∞ = op(1), as a standard
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result in kernel regression estimation (Györfi et al., 1989 and Hansen, 2008). Conditioning
on (X∗,Z∗), the noise ε∗ ∼ σ̃(X∗,Z∗)e∗, where e∗ ∼ F̂e which is independent of f̃(x,z).
The bootstrap response is generated from

Y ∗ =

4∑
k=1

(X∗)Tβ̂k1{Z∗ ∈Rk(γ̂)}+ ε∗Q. (D.23)

Condition (C1) is a direct consequence of Theorem 3.1. Let f̃(x) =
∫
f̃(x,z)dz and f(x)

be the density of X under P0. Then we have ‖f̃(x)− f(x)‖∞ converges to 0 in probability,
which is implied by ‖f̃(x,z)− f(x,z)‖∞

P−→ 0 and the dominidated convergence theorem.
Therefore, Q̂h(‖X‖4) =

∫
‖x‖4f̃(x)dx converges to P0(‖X‖4) <∞ by the dominidated

convergence theorem, which verifies the first condition in (C2). For the second condition of
the boundness of Q̂h(ε

4), we notice that by the independence of F̂e and f̃(x,z),

Q̂h(ε
4) =

∫
σ̃4(X,Z)e4f̃(x,z)dxdzdF̂e(e), (D.24)

which is Op(1) because of (v) of Lemma D.6, the uniform boundness of σ̃(x,z) and f̃(x,z),
which are also compactly supported. Therefore, we conclude that (C2) holds in probability
approaching 1. Because ε = σ̃(X,Z)e, where e ∼ F̂e is independent of (X,Z) and has a
zero mean, it holds that Q̂h (ε|X,Z) = 0. As a standard result in local linear regression,
Assumptions 6. (i) and (ii) imply ‖σ̃(x,z) − σ(x,z)‖∞

P−→ 0, which together with (iv) of
Lemma D.6 leads to Q̂h(ε

2
Q)

P−→ P0(ε
2). Therefore, Condition (C3) holds in probability. Be-

cause (X,Z) has a compact support and ‖f̃(x,z)−f(x,z)‖∞
P−→ 0, applying the dominated

convergence therorem yields that (D.3) holds in probability. Therefore, (C4) is ensured.
To show (C5), we first note that for any l ∈ {1,2},∣∣∣f̃ql,Q|Z−1,l

(q|z)− fql|Z−1,l
(q|z)

∣∣∣= ∣∣∣∣∣ f̃ql,Q,Z−1,l
(q,z)

f̃Z−1,l
(z)

−
fql,Z−1,l

(q,z)

fZ−1,l
(z)

∣∣∣∣∣ P−→ 0, (D.25)

for q and z uniformly. Since fql|Z−1,l
(q|z) is bounded for each z ∈Z−1,l and ql in the neigh-

borhood of 0 as required in Assumption 5. (ii), (D.25) implies that f̃ql,Q|Z−1,l
(q|z) is bounded

in probability. Then using the dominated convergence theorem, Condition (C5) can be shown.
Assumption 6. (i) requires that X ×Z is compact and implies that fX|Z is bounded. Hence,
for any finite r,

Q̂h (‖X‖r|ZT

l γ = 0) =

∫
X×Z

‖x‖r1(zTγ = 0)
f̃X,Zl

(x,z)

f̃Zl
(z)

dxdz

P−→ P0 (‖X‖r|ZT

l γ = 0) , (D.26)

by the dominated convergence theorem. With the consistency of γ̂ and Assumption 4, (D.26)
implies the first two conditions in Condition (C6). Since

Q̂h (ε
r|ZT

l γ = 0) =

∫
R
xrdF̂e(x)

∫
X×Z

σ̃(x,z)1(zTγ = 0)
f̃X,Zl

(x,z)

f̃Zl
(z)

dxdz,

using Lemma D.6 (v) and Assumption 6. (ii) ensures that Q̂h (ε
r|ZT

l γ = 0) <∞ for the r
specified in Assumption 4 (iv). Hence, Condition (C6) is verified.
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For (C7), (i) is a direct consequence of ‖f̃(x,z) − f(x,z)‖∞
P−→ 0. For (ii), recall

that ξ(j,k)Q =
(
δ̂T

jkXX
Tδ̂jk + 2XTδ̂jkσ̃(X,Z)eQ

){
1(j)(γ̂) + 1(k)(γ̂)

}
, to emphasis it is

a function of (X,Z, e, θ̂), we write ξ(j,k)Q = ξ(X,Z, e, θ̂). Then,

Q̂h

{
eitξ

(j,k)
Q |ql,Q = 0,Z−1,l

}
=

∫
eitξ(x,z,e,θ̂)1(zTγ̂l = 0)

f̃X,Zl
(x,z)

f̃Zl
(z)

dxdzdF̂e(e)

P−→
∫
eitξ(x,z,e,θ0)1(zTγl0 = 0)

fX,Zl
(x,z)

fZl
(z)

dxdzdFe(e)

=P0

{
eitξ

(j,k) |ql = 0,Z−1,l

}
, (D.27)

by Lemma D.6 (i) and the dominated convergence theorem. Therefore, (C7) (ii) holds in
probability. Finally, for (C7) (iii) we note that for each l ∈ {1,2},z−1,i ∈ Z−1,l, q ∈ R and
ε > 0, there exists δ > 0 such that if |q|< δ,

|f̃ql|Z−1,l
(q|Z−1,l)− f̃ql|Z−1,l

(0|Z−1,l)|

≤
2∑
i=1

|f̃ql|Z−1,l
(qi|Z−1,l)− fql|Z−1,i

(qi|Z−1,l)|+ |fql|Z−1,l
(q|Z−1,l)− fql|Z−1,l

(0|Z−1,l)|,

where q1 = q and q2 = 0. With (D.25), which shows the first term of the right-hand side of
the above inequality is op(1), and Assumption 5. (ii), which implies that for any ε > 0, there
exists δ > 0 such that the second term is less than ϵ provided that |q|< δ, it can be shown that
f̃ql|Z−1,l

(q|Z−1,l) is continuous at 0 for each z−1,l in probability. Similarly, the continuity
of f̃ξ(j,k)

Q |(ql,Q,Z−1,l)
(ξ|q,z) can be shown. Hence, Condition (C7) holds with the probability

approaching 1. Finally, with Conditions (C1)–(C7) verified, Theorem 5.1 follows by applying
Lemma D.4.

LEMMA D.6. Let Fe and φe be the distribution function and characteristic function of
e, respectively. Then under Assumptions 1-6,

(i) for any η > 0, sup|ξ|≤η
{∣∣∣∫ exp(iξx)dF̂e −φe(ξ)

∣∣∣} P−→ 0;

(ii) ‖F̂e − Fe‖∞
P−→ 0;

(iii)
∫
|x|dF̂e(x)

P−→ P0(|e|);
(iv)

∫
x2dF̂e(x)

P−→ 1;
(v)
∫
xrdF̂e(x) =Op(1), where r is specified in Assumption 4.

PROOF. (i) Let FT,e be the empirical distribution function of {et}Tt=1. Note that∫
exp(iξx)dF̂e(x) = exp (−itēT )PT {exp (iξêt)} .

Hence, for any |ξ| ≤ η with η > 0, we have∣∣∣∣∫ exp(iξx)dF̂e − exp (−iξēT )
∫

exp(iξx)dFT,e(x)

∣∣∣∣
= |PT {exp (iξêt)} − PT {exp(iξet)}| ≤ |η|PT (|êt − et|) . (D.28)

We claim that

PT (|êt − et|)
P−→ 0, (D.29)
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which will be shown later. Then (D.28) implies that

sup
|ξ|≤η

{∣∣∣∣∫ exp(iξx)dF̂e − exp (−iξēT )
∫

exp(iξx)dFT,e(x)

∣∣∣∣} P−→ 0, (D.30)

and Lemma D.6 (i) follows from the facts that ēT = PT (êt)
P−→ 0, and

sup
|ξ|≤η

|PT {exp(iξet)} − P0 {exp(iξet)}|
P−→ 0

by the ULLN under mixing sequences.
It remains to verify the claim (D.29). For notational simplicity, we denote σ̂t := σ̃(Xt,Zt)

and σt := σ(Xt,Zt). Then sup1≤t≤T |σt − σ̂t|= op(1) by Assumption 5.(ii). Note that

êt =
Yt −

∑4
k=1X

T

t β̂k1
(k)
t (γ̂)

σ̂t

=

∑4
j=1X

T

t

(
β̂j −βj0

)
1
(j)
t (γ0)1

(j)
t (γ̂)

σ̂t
+

∑4
j=1

∑K
i ̸=jX

T

t

(
β̂i −βj0

)
1
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

+
σt − σ̂t
σ̂t

et + et =:E1,t +E2,t +E3,t + et, say. (D.31)

Denote Êk,T = PT (|Ek,t|) for k = 1,2,3. Then to show (D.29), it suffices to show Êk,T
P−→ 0

as T →∞. For the first term E1,T , we have

Ê1,T ≤
4∑
j=1

PT


∣∣∣∣∣∣
XT

t

(
β̂j −βj0

)
1
(j)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣∣


≤
4∑
j=1

PT


∣∣∣∣∣∣
XT

t

(
β̂j −βj0

)
σt + op(1)

∣∣∣∣∣∣
≤

4∑
j=1

PT

{∣∣∣∣∣‖Xt‖‖β̂j −βj0‖
σt + op(1)

∣∣∣∣∣
}

=Op(T
−1/2), (D.32)

since σt > σ > 0 and ‖β̂j − βj0‖=Op(T
−1/2). For the second term E2,T , it is op(1) if for

each i 6= j ∈ {1, · · · ,4}, PT
{∣∣∣XT

t

(
β̂i −βj0

)
1
(i)
t (γ0)1

(j)
t (γ̂)/σ̂t

∣∣∣}= op(1), which can be
shown as

PT


∣∣∣∣∣∣
XT

t

(
β̂i −βj0

)
1
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣∣


≤PT

{∣∣∣∣∣XT

t (β̂i −βi0)
σ̂t

∣∣∣∣∣
}

+ PT

{∣∣∣∣∣XT

t δij,01
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣
}
,

where the first term is Op(T−1/2) from the same reason as for (D.32). For the second term,

PT

{∣∣∣∣∣XT

t δij,01
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣
}

≤
L∑
l=1

PT
{
‖Xt‖‖δij,0‖
σt + op(1)

|1l,t(γl0)− 1l,t(γ̂l)|
}
,
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which is Op(T
−1) because of (A.20) in Lemma A.4. Therefore, we obtain Ê2,T =

Op(T
−1/2). For the third term Ê3,T , it holds that

Ê3,T = PT
(∣∣∣∣σt − σ̂t

σ̂t
et

∣∣∣∣)≤

√√√√PT

(∣∣∣∣σt − σ̂t
σ̂t

∣∣∣∣2
)√

PT (e2t ).

Since PT (e2t ) =Op(1), and |σt − σ̂t|= op(1), σt < σ uniformly for t ∈ {1, · · · , T}, it yields
that E3,T = op(1). Combining with (D.31), it yields that for any t ∈ {1, · · · , T}.

PT (|êt − et|)≤ Ê1,T + Ê2,T + Ê3,T = op(1), (D.33)

which verifies the claim (D.29), and thus completes the proof for (i).
(ii) By Levy-Cramer continuity theorem, (i) implies that F̂e(x) = Fe(x) + op(1) for any

x ∈R. Then (ii) follows from the continuity of Fe and Polya’s theorem.
(iii) Note that ∣∣∣∣∫ |x|dF̂e(x)− PT (|et|)

∣∣∣∣= |PT (|êt − ēT | − |et|)|

≤PT (|êt − et|) + |ēT |
P−→ 0,

implied by (D.29) and ēT = PT (êt)
P−→ 0. Because PT (|et|) = P0(|e|) + op(1) by the weak

law of large numbers, the conclusion (iii) follows.
(iv) Since

∫
x2dF̂e(x) = PT

(
ê2t
)
− (ēT )

2 = PT
(
ê2t
)
+ op(1) and PT (e2t ) = P0(e

2) +

op(1) = 1+ op(1), to show (iv) it is sufficient to show that PT
(
ê2t
)
− PT (e2t ) = op(1). From

(D.31) we have

ê2t − e2t = (E1,t +E2,t +E3,t)
2 + 2(E1,t +E2,t +E3,t)et, (D.34)

which implies that∣∣PT (ê2t )− PT (e2t )
∣∣≤PT

(∣∣ê2t − e2t
∣∣)

≤3

3∑
i=1

PT (E2
i,t) + 2

√√√√PT {(
3∑
i=1

Ei,t)2}
√

PT (e2t )

≤3

3∑
i=1

PT (E2
i,t) + 2

√√√√3

3∑
i=1

PT (E2
i,t)
√

1 + op(1),

by the Cr and Cauchy-Schwartz inequalities. Therefore, PT
(
ê2t
)
− PT (e2t ) = op(1) if

PT (E2
i,t) = op(1) for i = 1,2,3. Since this can be shown in the almost same way as for

showing PT (|Ei,t|) = op(1) in the proof of (i), we omit the detailed proof here for simplicity.
(v) Note that ∫

|x|rdF̂e(x)≤
r∑
i=0

(
r

i

)
|ēT |iPT (êr−it ), (D.35)

and |ēT |i = |PT (êt)|i = op(1) for each 1 ≤ i ≤ r. Using the expansion (D.31) and the fact
that PT (|et|i) = P0(|et|i)+ op(1), it is straightforward to show that PT (êit) =Op(1) for each
1≤ i≤ r. Therefore, the desired result (v) is verified.
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APPENDIX E: PROOFS FOR SECTION 6

E.1. Proof of Theorem 6.1. In this subsection, we present the proof for Theorem 6.1
of the main paper on the convergence of the four-regime based LS estimator under the seg-
mented models with less than four regimes.

PROOF. Suppose that the true model is

Y =

K0∑
k=1

XTβk01{Z ∈Rk(γ0)}+ ε, (E.1)

where the number of regimes K0 ≤ 4 and the number of splitting hyperplanes L0 ≤ 2. In
particular, Rk(γ0) = Z1 ×Z2 for the global linear model (K0 = 1), the splitting coefficient
γ0 = γ10 or γ20 for L0 = 1, and γ0 = (γT

10,γ
T

20)
T for L0 = 2.

For a candidate θ = (γ,β), we let {R(4)
j (γ)}4j=1 be the four regimes under γ, and denote

G = {γ1,γ2} and B = {β1, · · · ,β4}. Then, the population of the LS criterion function based
on the four-regime model is

M(θ) = E[{Y −
4∑
j=1

XTβj1{Z ∈R(4)
j (γ)}}2].

Suppose that when the data is generated from Model (E.1) with K0 ≤ 4, M(θ) is minimized
at θ∗ = (γT

∗ ,β
T

∗ )
T. Let G∗ = {γ1∗,γ2∗} and B∗ = {β1∗, · · · ,β4∗}, representing the true pa-

rameters under the four-segment model. In the case ofK0 = 4, we have shown that θ∗ = θ0 in
Proposition 1. Now we show that when K0 < 4, the true parameters γ0 and β0 are elements
of G∗ and B∗, respectively. That is, we are to show that d(γ0,G∗) = 0 and d(βk0,B∗) = 0 for
k = 1,2. Without loss of generality, we take L0 = 1 and K0 = 2 in this proof, which makes
Model (E.1) to be the two-regime model (6.3) of the main paper. The proof for the other
degenerated models can be shown similarly.

Note that

M(θ) = E[{Y −
4∑
j=1

XTβj1{Z ∈R(4)
j (γ)}}2]

= E[ε2 + {
2∑

k=1

XTβk01{Z ∈Rk(γ0)} −
4∑
j=1

XTβj1{Z ∈R(4)
j (γ)}}2]

= E(ε2) +
2∑

k=1

4∑
j=1

E[{XT(βk0 −βj)}21{Z ∈Rk(γ0)∩R
(4)
j (γ)}]

= E(ε2) +
2∑

k=1

4∑
j=1

Ak,j(θ), say, (E.2)

where the second equality is due to E(ε|X,Z) = 0. At θ = θ∗, it can be shown that
Ak,j(θ∗) = 0 for any k, j. Hence M(θ∗) = E(ε2).

Suppose that d(γ0,G) 6= 0, namely γ1 6= γ0 and γ2 6= γ0. Then the true splitting hyper-
plane H0 : z

Tγ0 = 0 will partition through at least one region R(4)
j (γ) for j ∈ {1, · · · ,4}. By

Assumption S2 (i) we have P
{
Z ∈R1(γ0)∩R(4)

j (γ)
}
> 0 and P

{
Z ∈R2(γ0)∩R(4)

j (γ)
}
>

0. Therefore,

A1,j(θ)≥ λ0‖βj −β10‖2, A2,j(θ)≥ λ0‖βj −β20‖2
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according to Assumption S2 (ii). Since β10 6= β20, either A1,j(θ)> 0 or A2,j(θ)> 0. Con-
sequently, M(θ)≥M(θ∗) +Ak,h(θ) +Aj,h(θ)>M(θ∗).

Suppose that d(γ0,G) = 0, namely γ1 = γ0 or γ2 = γ0, while d(βk0,B) 6= 0 for k ∈
{1,2}. In such case, there exits j ∈ {1, · · · ,4} such that R(4)

j (γ)⊂Rk(γ0). Hence

Ak,j(θ) = E
[
{XT

t (βj −βk0)}
2
1{Zt ∈Rk(γ0)}

]
≥ λ0‖βj −βk0‖2 > 0,

by Assumption S2 (ii). Therefore, M(θ)≥M(θ∗) +Ak,j(θ)>M(θ∗).
Combining the two cases yields that

M(θ)>M(θ∗) for any θ ∈Θ (E.3)

if either d(γ0,G) 6= 0 or d(βk0,B) 6= 0 for some k ∈ {1,2}. Therefore, θ∗ as the minimizer
of M(θ) must satisfy d(γ0,G∗) = 0 and d(βk0,B∗) = 0 for k ∈ {1,2}.

Having established the minimizer of the least square criterion function under the popu-
lation level, the rest of the proof for the convergence rate of the LS estimator under As-
sumptions S3 and S4, follows the similar arguments as in Appendix B for the four-regime
case.

E.2. Proof of Theorem 6.2.

PROOF. Suppose that the true model is given by (E.1) with the K0 true regimes being
{Rk0}K0

k=1 and the true regression coefficients are {βk0}K0

k=1 respectively. Let the estimated
regimes and the estimated regression coefficients under the four-regime model be {R̂(4)

j }4j=1

and {β̂(4)
j }4j=1, respectively.

For any 1≤K ≤ 4, let

CT (K) = log

(
ST (K)

T

)
+
λT
T
K,

where λT →∞ and λT /T → 0 as T →∞, and

ST (4) =

T∑
t=1

[
Yt −

4∑
k=1

XT

t β̂
(4)
k 1

{
Zt ∈ R̂(4)

k

}]2
.

For 1≤K ≤ 3, define recursively

ST (K) = ST (K + 1) +D
(K+1)
T (̂i, ĥ),

where (̂iK+1, ĥK+1) = argminAk+1
D

(K+1)
T (i, h) and

D
(K)
T (i, h) =min

β∈B

T∑
t=1

[Yt −XT

t β1{Zt ∈ R̂
(K)
i ∪ R̂(K)

h }]2

−
T∑
t=1

[Yt −
∑
k=i,h

XT

t β̂
(K)
k 1{Zt ∈ R̂(K)

k }]2

=:S
(K)
i,h − T

(K)
i,h , say.

First, we claim that for K ≥K0, for each 1 ≤ h ≤K0, there exists an index set Q(K)
h ⊂

{1, · · · ,K} such that

P
{
Zt ∈Rh0 4∪i∈Q(K)

h
R̂

(K)
i

}
=O(T−1) and max

i∈Q(K)
h

‖βh0 − β̂
(K)
i ‖=Op(T

−1/2). (E.4)
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We will prove the claim recursively. Specifically, we are to show that if (E.4) holds for K =
K̃ , then it also holds forK = K̃−1, by showing that the index pair for merged regimes (i, h)

from the K̃-segments model to the (K̃ − 1)-segments model satisfies (i, h) ∈Q(K̃)
k for some

1≤ k ≤ K̃ .
We start with K = 4, where (E.4) is ensured by Theorem 6.1. For the case of K = 3, we

now show that D(4)
T (i, h)<D

(4)
T (i′, h′) if {i, h} ⊂Q(4)

k for some 1≤ k ≤K0 and {i′, h′} 6⊂
Q(4)
k for any 1 ≤ k ≤ K0, which implies that the selected merged regimes leading to the

submodel with K = 3 are R̂(4)
i and R̂(4)

h which are asymptotically contained in the same
regime Rk0.

Case (1). If two indices {ik, hk} ⊂Q(4)
k , with some standard algebra, we can obtain

D
(4)
T (ik, hk) =S

(4)
ik,hk

− T
(4)
ik,hk

=HT (R̂
(4)
ik

)TΞ−1
T HT (R̂

(4)
ik

),

where

HT (R̂
(4)
ik

) = {Ip −GT (R̂
(4)
i )G−1

k,T }
√
TET

{
εtXt1(Zt ∈ R̂(4)

ik
)
}

and

ΞT =GT (R̂
(4)
ik

)−GT (R̂
(4)
ik

)G−1
k,TGT (R̂

(4)
ik

),

with GT (R̂
(4)
ik

) = ET [XtX
T

t 1{Zt ∈ R̂
(4)
ik

}] and Gk,T = ET [XtX
T

t 1{Zt ∈ Rk0}] for each

1≤ k ≤K0 and ik ∈ Q(4)
k . Using the martingale central limit theorem and the uniform law

of large numbers, it can be easily seen that

D
(4)
T (ik, hk) =Op(1), if {ik, hk} ⊂Q(4)

k for each 1≤ k ≤K0. (E.5)

Case (2). If the two indices {i, h} 6⊂ Q(4)
k for any 1≤ k ≤K0. Suppose that i ∈Q(4)

ĩ,
and

h ∈Q(4)

h̃
, for some 1≤ ĩ, h̃≤K0. Then Theorem 6.1 implies that that P{Zt ∈ R̂(4)

i \Rĩ0}=
Op(1/T ),‖βĩ0 − β̂i‖ = Op(1/

√
T ), and the same consistency also holds for R̂(4)

h and β̂h.
Then standard algebra leads to

Ti,h/T = ET [ε2t1{Zt ∈ R̂
(4)
i ∪ R̂(4)

h }] + op(1), and (E.6)

Si,h/T = ET [ε2t1{Zt ∈ R̂
(4)
i ∪ R̂(4)

h }] + δT

ĩh̃,0
GT (R̂

(4)
i )GT (R̂

(4)
i∪h)

−1GT (R̂
(4)
h )δĩh̃,0 + op(1),

where GT (R̂
(4)
i∪h) = ET [XtX

T

t 1{Zt ∈ R̂
(4)
i ∪ R̂(4)

h }]. By Assumption S2 and the ULLN,
the smallest eigenvalue of GT (R̂

(4)
i )GT (R̂

(4)
i∪h)

−1GT (R̂
(4)
h ) is asymptotically bounded away

from some constant λ1 > 0. Since δĩh̃,0 = βĩ0−βh̃0 6= 0 as required in Assumption S2, from
(E.6) we obtain

D
(4)
T (i, h) = Si,h − Ti,h =Op(T ), if {i, h} 6⊂ Q(4)

k for any 1≤ k ≤K0. (E.7)

This together with (E.5) and (E.7) implies that the optimal regime merger from K = 4 to
K = 3 is the pair of regimes that are contained in the same Q(4)

k for some 1 ≤ k ≤ K0.
Hence, (E.4) with K = 3 is verified. Using the same argument the claim (E.4) with K = 2
and 1 can also be established, respectively, provided that K ≥K0.

(E.4) implies that with some relabelling,

P{R̂(K0)
k 4Rk0}=O(T−1) and‖βk0 − β̂k‖=Op(T

−1/2), (E.8)

for each 1 ≤ k ≤ K0. which reveals that the back-elimination procedure consistently esti-
mates the true model, if it can be shown that P(K̂ =K0)→ 1 as T →∞.
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We now show that P{CT (K)< CT (K0)} → 0 when K 6=K0, which ensures the model
selection consistency.

(i) First, if K <K0, by the definition of C(K), we have

P{CT (K)< CT (K0)}= P
{
log

(
ST (K)

ST (K0)

)
<
λT (K0 −K)

T

}
. (E.9)

As λT /T → 0, to show the above probability converges to 0, it suffices to show that
P{ST (K) > ST (K0)} → 1. Note that (E.4) means that |Q(K0)

h | = 1 for each 1 ≤ h ≤ K0.
Similar to (E.7), it is straightforward to show that D(K)

T (̂iK , ĥK)> 0 for each 1≤K ≤K0,
meaning that any under-segmented models have increased sum of squared residuals. As
ST (K)− ST (K0) =

∑K0

k=K+1D
(k)
T (̂ik, ĥk), we have P{ST (K)>ST (K0)}→ 1, which im-

plies (E.9) converges to 0 as λT /T → 0.
(ii) If K >K0, meaning that the K-regime model is over-segmented, we have

P{CT (K)< CT (K0)}= P
{
log

(
ST (K0)

ST (K)

)
>
λT (K −K0)

T

}
= P

{
ST (K0)− ST (K)

ST (K)/T
> T

(
e

λT (K−K0)

T − 1
)}

, (E.10)

and ST (K0) = ST (K) +
∑K

k=K0+1D
(k)
T (̂ik, ĥk). Because of (E.5) we have ST (K0) −

ST (K) = Op(1). In addition, ST (K0)/T = ET (ε2t ) = Op(1). By the Taylor expansion,

T
(
e

λT (K−K0)

T − 1
)
=O(λT )→∞. Hence, the probability in (E.10) converges to 0, .

Combining Cases (i) can (ii), we have P{CT (K)< CT (K0)} → 0 if K 6= K0. Since
K̂ = argmin1≤K≤4 C(K) and 1≤K0 ≤ 4, it implies that P(K̂ =K0)→ 1 as T →∞. This
together with (E.8) completes the proof.

APPENDIX F: AUXILIARY ASSUMPTIONS

F.1. Sufficient conditions for some assumptions. In this part, we provide some suffi-
cient conditions for Assumptions 2.(i), 3.(ii), and 4.(i).

ASSUMPTION S1. (i) For each l ∈ {1,2}, let ql = ZTγl0. There exists some j ∈
{1, · · · , dl}, such that for almost surely Z−1,l, the conditional density fql|Z−1,l

(q) is contin-
uous at q = 0 and fql,t|Z−1,l

(0)≥ c0 for almost surely Z−1,l, where c0 is a positive constant.

(ii) For each l ∈ {1,2}, there exists c1 > 0 and j ∈ [dl] such that the conditional density
fql|Z−1,l

(q|z)< c1 for almost surely q ∈R and z ∈ Z−1,l, where Z−1,l is the support for the
distribution of Z−1,l and is a compact set in Rdl−1.

(iii) For each l ∈ {1,2}, there exist some jl ∈ [dl] and c2 > 0 such that the condi-
tional density f(q1,q2)|(Z−j1,1,Z−j2,2)(q1, q2|z1,z2) < c2 for almost surely (q1, q2) ∈ R2 and
(z1,z2) ∈ Z−j1,1 ×Z−j2,2, where Z−jl,l is the support for the distribution of Z−jl.l and is a
compact set in Rdl−1 for each l ∈ {1,2}.

The following lemma shows that Assumption S1 implies Assumptions 2.(i), 3.(ii), 4.(i)
and 4.(iii).

LEMMA F.1. (i) Under Assumption S1 (i), there exists some constant δ1 > 0, if ϵ < δ,
then P(|ql|< ϵ|Z−1,l)≥ c0ϵ/2 almost surely, implying Assumptions 2.(i) and 4.(i).
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(ii) Under Assumption S1 (ii), there exist some positive constants δ2 and c1 such that
if γ1,γ2 ∈ N (γl0; δ2), then |P(ZT

l γ1 < 0)− P(ZT

l γ2 < 0)| ≤ c3‖γ1 − γ2‖, which ensures
Assumptions 3.(ii).

(iii) Under Assumption S1 (iii),there exist some positive constants δ3 and c2 such that
if γ1,γ2 ∈ N (γ10; δ0) and γ3,γ4 ∈ N (γ20, δ2), then P(ZT

1γ1 < 0 < ZT

1γ2,Z
T

2γ3 < 0 <
ZT

2γ4)≤ c2‖γ1 − γ2‖‖γ3 − γ4‖, which ensures Assumptions 4.(iii).

PROOF. (i) The continuity of fql,t|Z−j,l
(q) at q = 0 in Assumption S1 (i) implies that there

exists δ1 > 0 such that fql|Z−1,l
(|q|)≥ fql|Z−1,l

(0)− c1/2≥ c1/2. The assertion then follows
from P(|ql|< ϵ|Z−i,l) =

∫ ϵ
−ϵ fql|Z−1,l

(q)dq.
(ii) Let ∆l(γ) =Z

T

l (γl0 − γ). Then for any γ1,γ2 ∈N (γl0; δ1), where δ1 < δ0/B,

P{ZT

l γ1 > 0>ZT

l γ2}=P{∆l(γ1)< ql <∆l(γ2)}=EZ−1,l

{∫ ∆l(γ2)

∆l(γ1)
fql|Z−1,l

(q)dq

}
.

Let M > 0 be the constant such that ‖z‖∞ < M for all z ∈ Z−j,l and let δ1 = δ0/M ,
which ensures ‖∆l(γ)‖∞ ≤ δ0 whenever γ ∈ N (γl0; δ1). It is then straightforward to
see that P{ZT

l γ1 > 0>ZT

l γ2} ≤ c1M‖γ1 − γ2‖. Similary, P{ZT

l γ1 < 0<ZT

l γ2} can be
bounded in the same way. Since |P(ZT

l γ1 < 0)− P(ZT

l γ2 < 0)|= P{ZT

l γ1 > 0>ZT

l γ2}+
P{ZT

l γ1 < 0<ZT

l γ2}, the desired result follows.
(iii) It follows from the similar argument as in (ii) and thus is omitted.

F.2. Assumptions for degenerated models. The following assumption adapts Assump-
tions 2-4 of the main article for the segmented regression with the number of regimes K0 = 4
and the number of splitting hyperplanes L0 = 2 to the degenerated models with 1≤K0 ≤ 3
and 0 ≤ L0 ≤ 2, which include Model (6.1)–(6.5) in the main article. Let (Y,X,Z) ∼ P0.
Suppose the data generated from a model

Y =

K0∑
k=1

XTβk01{Z ∈Rk(γ0)}+ ε, (F.1)

where the number of regimes 1≤K0 ≤ 3 and the number of splitting hyperplanes 0≤ L0 ≤
2. In particular, Rk(γ0) =Z1 ×Z2 for the global linear model (K0 = 1), the splitting coeffi-
cient γ0 = γ10 or γ20 when L0 = 1, and γ0 = (γT

10,γ
T

20)
T when L0 = 2. We use L0 ⊂ {1,2}

to indicate the indices of the splitting hyperplanes. For instance, if the true model has two
hyperplanes then L0 = {1,2}; and if it has only one hyperplane H20 = {zT

2γ20 = 0} then
L0 = {2}. The following assumptions are needed for Theorem 6.1.

ASSUMPTION S2. For each i ∈ L0 and k,h ∈ {1, · · · ,K0}, the following conditions
hold. (i) If L0 = 2, then Z1 and Z2 are not identically distributed. (ii) There exists a j ∈ [di]
such that P(|qi| ≤ ϵ|Z−j,i) > 0 for almost surely Z−j,i for any ϵ > 0, where Z−j,i is the
vector after excluding Zi’s jth element. Without loss of generality, assume j = 1. (iii)
For any γ ∈ Γ1 × Γ2, if P{Z ∈Rk(γ0)∩Rh(γ)} > 0, then the smallest eigenvalue of
E{XXT|Z ∈Rk(γ0)∩Rh(γ)} ≥ λ0 for some constant λ0 > 0. (iv) If (k,h) ∈ S(i), then
‖βk0 −βh0‖> c0 for some constant c0 > 0, where S(i) is defined in (3).

ASSUMPTION S3. (i) E(Y 4)<∞, E(‖X‖4)<∞ and maxi∈L0
E(‖Zi‖)<∞. (ii) For

each i ∈ L0, P(ZT

i γ1 < 0<ZT

i γ2)≤ c1‖γ1−γ2‖ if γ1,γ2, ∈N (γi0; δ0), for some constants
δ0, c1 > 0.
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ASSUMPTION S4. (i) For i ∈ L0, there exist constants δ1, c2 > 0 such that if ϵ ∈ (0, δ1)
then P(|qi| < ϵ|Z−1,i) ≥ c2ϵ almost surely. (ii) For i ∈ L0, there exists a neighborhood
Ni = N (γi0; δ2) for some δ2 > 0, such that infγ∈Ni

E(‖X‖|ZT

i γ = 0) > 0 almost surely.
(iii) If L0 = 2, then P(ZT

1γ1 < 0 < ZT

1γ2,Z
T

2γ3 < 0 < ZT

2γ4) ≤ c3‖γ1 − γ2‖‖γ3 − γ4‖
for some constant c3 > 0 if γ1,γ2 ∈ N1 and γ3,γ4 ∈ N2. (iv) For some constant r > 8,
supγ∈Ni

E(‖X‖r|ZT

i γ = 0)<∞ and supγ∈Ni
E(εr|ZT

i γ = 0)<∞ almost surely.

APPENDIX G: EXTENSION TO GENERAL SEGMENTED REGRESSIONS

In this section, we discuss the extension of the proposed four-regime segmented regression
to general segmented regressions with more than L = 2 splits. The range of numbers of
regimes split by L hyperplanes is presented by the following result, whose proof can be seen
in Buck (1943).

THEOREM G.1. Suppose that there are L≥ 1 hyperplanes Hl = {z ∈Z : zTγi = 0}Li=1.
Then the number of regimes K split by these L hyperplanes satisfies

L− 1≤K ≤
min(L,d)∑
i=0

(
L

i

)
. (G.1)

REMARK G.1. The above bound in sharp and can be attained in general hyperplane
arrangement (see e.g., Orlik and Terao, 2013). It reveals the challenges in the general seg-
mented linear regressions. First, in the large or high dimensional setting where d > L, the
right-hand of (G.1) becomes 2L. It implies that each possible combination of the signs of the
{zTγi,1 ≤ i ≤ L} determines a specific region. Under such a circumstance, the computa-
tion burdens will be quite high in both optimization and model selection to select among the
models with 1≤K ≤ 2L. Moreover, the increase of K can bring more risk of overfitting.

On the other hand, under the regime where d < L, the maximum number of region Kmax

is
∑d

i=0

(
L
i

)
= O(Ld). The main difficulty is in specifying the model form of segmented

models , since it can be challenging to know which hyperplanes constitute the boundaries of
each regime due to the complications of hyperplane arrangements. One possible solution is
to via some data-driven method to determine the boundaries of each regime, while it brings
more computational complexity and requires further studies.

APPENDIX H: ADDITIONAL SIMULATION RESULTS

H.1. Simulations under models with less than four regimes. This section presents re-
sults for the estimation based on the four-regime model when the underlying models were de-
generated with less than four regimes. The true parameters for the degenerated were specified
in Section 7.2 of the main paper. The data generating processes for {Xt,Z1,t,Z2,t, εt}Tt=1 in-
cluded three the independence, the AR(0.2) and the MA(0.2) settings as that in Section 7.1
of the main paper. Table S2 summarizes the empirical averages of the L2-distance between
the sets of the true parameters and their estimates under the four-regime model: D(G0, Ĝ)
and D(B0, B̂). In addition, to evaluate the cost of not knowing the number of the underly-
ing regimes, we also estimated γ0 and β0 in the so-called oracle setting, in which the three
degenerated models were known to have three or two regimes and the parameters were es-
timated by the LS estimators of the corresponding models, denoted by γ̂3REG, β̂3REG and
γ̂2REG, β̂2REG, respectively. The three-regime LS estimators were obtained via a new MIQP
algorithm presented in Appendix C of the SM, while β̂2REG of the two-regime estimators
were calculated by the algorithm of Lee et al. (2021).
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Table S2 shows that the estimation errors as reflected by the distance measures D(G0, Ĝ)
and D(B0, B̂) reduced as the sample sizes T was increased, confirming that the parameters
of the degenerated models could be consistently estimated by the four-regime model. By
comparing D(G0, Ĝ) with ‖γ0 − γ̂3REG‖ and ‖γ0 − γ̂2REG‖ in Table S2, we found that the
estimation errors for γ0 based on the four-regime model were about the same as those of
γ̂3REG or γ̂2REG, respectively, meaning that the four-regime estimators achieved similar level
of accuracy as the estimators from the models with correctly specified number of regimes,
for the boundary coefficient estimation. The reason is that the four-regime estimator can
efficiently use the data points located near the underlying boundaries as γ̂3REG or γ̂2REG did.
On the other hand, Table S2 shows that the estimation accuracy for the regression coefficients
based on the four-regime model were inferior to the estimators based on the models with the
true number of regimes when the sample size was small. This was expected since the four-
regime based estimation made redundant regime partitions, and hence did not effectively used
the subsample belonged to the same underlying regime.
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TABLE S2
Empirical average D(G0, Ĝ),D(B0, B̂), which represent the L2 distance between the set of true parameters and

their estimates by the four-regime model, and ∥β0 − β̂3REG∥2,∥γ0 − γ̂3REG∥2, or ∥β0 − β̂2REG∥2 and
∥γ0 − γ̂2REG∥2 (multiplied by 10) under the independent (IND), auto-regressive (AR) and moving average
(MA) settings for {X0

t ,Z
0
1,t,Z

0
2,t}

T
t=1 of the three-regime model (a.2) and the two-regime model (b). The

numbers inside the parentheses are the standard errors of the simulated averages.

Three-regime model (a.1)

T
IND AR MA

D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG

200
0.55 4.53 0.53 4.33 0.67 4.14 0.61 3.96 0.68 4.29 0.66 3.99
0.26 1.24 0.22 0.95 0.35 0.82 0.33 0.84 0.30 1.15 0.27 0.84

400
0.30 3.09 0.32 2.95 0.30 2.85 0.32 2.73 0.30 2.84 0.31 2.74
0.18 0.72 0.17 0.61 0.15 0.67 0.17 0.57 0.17 0.64 0.16 0.60

800
0.14 2.24 0.16 2.15 0.15 1.92 0.15 2.01 0.15 1.96 0.15 1.95
0.07 0.51 0.06 0.48 0.08 0.47 0.08 0.45 0.06 0.37 0.05 0.37

1600
0.08 1.49 0.08 1.48 0.08 1.32 0.07 1.31 0.07 1.38 0.07 1.38
0.04 0.35 0.04 0.34 0.04 0.28 0.04 0.27 0.04 0.28 0.04 0.27

Three-regime model (a.2)

T
IND AR MA

D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG

200
2.08 4.91 2.09 4.64 2.29 4.58 2.27 4.23 2.21 4.53 2.25 4.28

(1.52) (1.09) (1.58) (1.01) (1.64) (1.08) (1.70) (0.95) (1.61) (1.05) (1.59) (0.97)

400
1.00 3.35 1.03 3.20 1.12 3.04 1.13 2.91 1.12 3.06 1.10 2.91

(0.85) (0.73) (0.87) (0.71) (0.81) (0.63) (0.80) (0.63) (0.82) (0.67) (0.78) (0.63)

800
0.49 2.31 0.48 2.26 0.53 2.08 0.51 1.98 0.49 2.14 0.49 2.06

(0.35) (0.47) (0.35) (0.46) (0.39) (0.45) (0.38) (0.44) (0.35) (0.44) (0.36) (0.43)

1600
0.26 1.62 0.26 1.58 0.24 1.48 0.24 1.44 0.24 1.51 0.23 1.47

(0.18) (0.33) (0.18) (0.33) (0.16) (0.31) (0.17) (0.29) (0.17) (0.31) (0.17) (0.30)
Two-regime model

T
IND AR MA

D(G0, Ĝ) D(B0, B̂) γ̂2REG β̂2REG D(G0, Ĝ) D(B0, B̂) γ̂2REG β̂2REG D(G0, Ĝ) D(B0, B̂) γ̂2REG β̂2REG

200
0.55 3.25 0.54 2.85 0.59 2.95 0.60 2.54 0.64 3.26 0.64 2.59

(0.44) (0.83) (0.43) (0.74) (0.45) (0.78) (0.48) (0.68) (0.49) (0.80) (0.48) (0.68)

400
0.30 2.28 0.30 1.97 0.29 2.10 0.31 1.78 0.28 2.31 0.31 1.83

(0.24) (0.59) (0.23) (0.49) (0.23) (0.49) (0.22) (0.46) (0.20) (0.54) (0.21) (0.49)

800
0.14 1.69 0.14 1.41 0.14 1.25 0.15 1.23 0.15 1.49 0.14 1.29

(0.10) (0.43) (0.11) (0.35) (0.12) (0.32) (0.13) (0.32) (0.11) (0.36) (0.11) (0.32)

1600
0.07 1.02 0.07 0.97 0.06 0.93 0.07 0.88 0.07 0.94 0.07 0.90

(0.05) (0.27) (0.06) (0.25) (0.05) (0.23) (0.05) (0.22) (0.05) (0.24) (0.05) (0.23)
Global linear model

T
IND AR MA

D(B0, B̂) β̂GLR D(B0, B̂) β̂GLR D(B0, B̂) β̂GLR

200
1.81 1.33 1.48 1.22 1.87 1.19

(0.67) (0.49) (0.55) (0.47) (0.62) (0.45)

400
1.23 0.92 1.02 0.87 1.24 0.86

(0.44) (0.33) (0.37) (0.33) (0.46) (0.33)

800
0.83 0.69 0.78 0.59 0.85 0.64

(0.23) (0.23) (0.27) (0.22) (0.30) (0.22)

1600
0.62 0.46 0.51 0.43 0.54 0.43

(0.24) (0.18) (0.18) (0.15) (0.18) (0.16)
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To gain further insights on the performances of the four-regime estimates under the de-
generated models, we investigated the simulation results in more details by comparing adja-
cent estimated regression coefficients. Figure S1 displays the box plots of the squared dis-
tances between the estimated adjacent regression coefficients ‖β̂j − β̂k‖2 where the under-
lying samples were generated from the three-regime model (a.2). Figure S1 shows that as
the sample size T was increased, ‖β̂1 − β̂2‖2,‖β̂2 − β̂3‖2 and ‖β̂4 − β̂1‖2 converged to
‖β10 − β20‖2,‖β20 − β30‖2 and ‖β30 − β10‖2, respectively, while ‖β̂3 − β̂4‖2 decreased
to 0, indicating that β̂1 and β̂2 were consistent estimates of β10 and β20, respectively, and
both β̂3 and β̂4 converged to β30. Similar results for the two-regime model are also shown
in Figure S2, which reveals that the estimated regression coefficients under the four-regime
model could still provide consistent estimates to the underlying coefficients of the degener-
ated models.

Fig S1: Box plots for the squared distances of the estimated adjacent regression coefficient
for the three-regime model (a.2). The red dashed lines indicate the squared distances of the
true regression coefficients for the adjacent estimated regimes.

Fig S2: Box plots for the squared distances of the estimated adjacent regression coefficient
for the two-regime model. The red dashed lines indicate the squared distances of the true
regression coefficients of the three-regression model, with ‖β10 −β20‖2 = 22.
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TABLE S3
Empirical Model specification results under segmented models with regimes from K0 = 4 to K0 = 1 under 500

times replications. The performances were evaluated by the empirical average of the estimated number of
regimes K̂ , the discrepancy between the true regimes and the estimated regimes D(R, R̂) and the L2 estimation
error of regression coefficients D(B, B̂). The penalty parameter λT in the model selection criterion was set as
λT ∈ {5,5 log(T ),5 log2(T )}. The numbers inside the parentheses are the standard errors of the simulated

averages.

Model T
λT = 5 λT = 5 log(T ) λT = 5 log2(T )

K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂)

Model (2.1)
(K0 = 4)

200
4.00 0.03 0.61 3.99 0.03 0.62 2.78 0.87 2.24

(0.00) (0.02) (0.12) (0.08) (0.04) (0.16) (0.87) (0.91) (1.05)

400
4.00 0.01 0.41 4.00 0.01 0.41 3.92 0.05 0.53

(0.00) (0.01) (0.08) (0.00) (0.01) (0.08) (0.27) (0.13) (0.43)

800
4.00 0.01 0.29 4.00 0.01 0.29 4.00 0.01 0.29

(0.00) (0.00) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
4.00 0.00 0.20 4.00 0.00 0.20 4.00 0.00 0.20

(0.00) (0.00) (0.04) (0.00) (0.00) (0.04) (0.00) (0.00) (0.04)

Model (6.1)
(K0 = 3)

200
3.44 0.12 0.50 3.00 0.02 0.48 2.85 0.13 0.75

(0.50) (0.11) (0.11) (0.00) (0.02) (0.11) (0.38) (0.30) (0.69)

400
3.39 0.10 0.34 3.00 0.01 0.33 3.00 0.01 0.33

(0.49) (0.11) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800
3.33 0.08 0.23 3.00 0.01 0.22 3.00 0.01 0.22

(0.47) (0.11) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
3.33 0.08 0.16 3.00 0.00 0.16 3.00 0.00 0.16

(0.47) (0.11) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.2)
(K0 = 3)

200
3.00 0.02 0.47 3.00 0.02 0.47 2.71 0.19 0.97

(0.00) (0.01) (0.12) (0.00) (0.01) (0.12) (0.46) (0.27) (0.80)

400
3.00 0.01 0.31 3.00 0.01 0.31 3.00 0.01 0.31

(0.00) (0.01) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800
3.00 0.01 0.22 3.00 0.01 0.22 3.00 0.01 0.22

(0.00) (0.00) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
3.00 0.00 0.15 3.00 0.00 0.15 3.00 0.00 0.15

(0.00) (0.00) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.3)
(K0 = 2)

200
3.38 0.14 0.35 2.03 0.01 0.30 2.00 0.01 0.30

(0.59) (0.11) (0.10) (0.17) (0.01) (0.08) (0.00) (0.01) (0.08)

400
3.54 0.13 0.24 2.01 0.01 0.20 2.00 0.01 0.20

(0.51) (0.11) (0.07) (0.08) (0.01) (0.05) (0.00) (0.00) (0.05)

800
3.53 0.12 0.16 2.00 0.00 0.14 2.00 0.00 0.14

(0.53) (0.11) (0.04) (0.06) (0.00) (0.04) (0.00) (0.00) (0.04)

1600
3.50 0.13 0.12 2.00 0.00 0.10 2.00 0.00 0.10

(0.55) (0.12) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.4)
(K0 = 2)

200
2.93 0.23 0.37 2.00 0.02 0.34 2.00 0.02 0.34

(0.80) (0.18) (0.10) (0.04) (0.02) (0.11) (0.00) (0.01) (0.11)

400
2.80 0.20 0.25 2.00 0.01 0.24 2.00 0.01 0.24

(0.76) (0.18) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800
2.68 0.17 0.17 2.00 0.00 0.16 2.00 0.00 0.16

(0.70) (0.17) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
2.70 0.18 0.15 2.00 0.01 0.14 2.00 0.01 0.14

(0.69) (0.17) (0.14) (0.06) (0.03) (0.14) (0.00) (0.03) (0.14)

Model (6.5)
(K0 = 1)

200
1.98 0.28 0.17 1.04 0.02 0.13 1.00 0.00 0.13

(0.70) (0.19) (0.07) (0.01) (0.00) (0.05) (0.00) (0.00) (0.05)

400
1.93 0.27 0.12 1.02 0.01 0.09 1.00 0.00 0.09

(0.68) (0.19) (0.04) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

800
1.84 0.25 0.08 1.00 0.00 0.07 1.00 0.00 0.07

(0.59) (0.18) (0.03) (0.00) (0.00) (0.02) (0.00) (0.00) (0.02)

1600
1.85 0.25 0.06 1.00 0.00 0.05 1.00 0.00 0.05

(0.64) (0.19) (0.02) (0.00) (0.00) (0.02) (0.00) (0.00) (0.02)
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H.2. Multiple solutions selected by the MIQP. In our estimation procedure, it is re-
quired to produce multiple solutions for γ and then take their averages to approximate the
centroid of the least squares set Ĝ. In this part, we demonstrate the performance of such an
approximation by the following simulation.

The data generation process for {(Yi,Xi,Zi)}Ti=1 was the same as the independence set-
ting as that in Section 7.1. The sample size used in this simulation was T = 800. The true
splitting coefficients were γ10 = (1,1,0)T and γ20 = (1,−1,0)T, respectively. By setting the
parameters SolutionNumber = 200 and PoolGap = 0 in the MIQP solver in GUROBI, we ob-
tained 200 solutions whose objective values all attained the minimum, which ensured that
these solutions were selected from the Ĝ. Figure S3 displays that the selected values were
nearly uniformly distributed, and their averages approximated to the true values colored in
red and the center of Ĝ.

Fig S3: Distributions of the selected 200 optimal solutions for the splitting coefficients. The first
elements of γ1 and γ2 were omitted since they were normalized as 1. The true values were indicated
in red, and the averages of the multiple solutions were indicated in green.

APPENDIX I: ADDITIONAL CASE STUDY RESULTS

The following Table S4 reports basic summary statistics of the involved variables in the
training and testing sets.
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TABLE S4
Sample means of the training and testing sets of the meteorological variables. The numbers inside the

parentheses are the sample standard deviations and the numbers inside the square brackets are the sample
correlations with the covariates and PM2.5.

Season PM2.5 TEMP DEWP PRES WD IWS log(BLH) RAIN
Training sets

Spring
48.31 15.87 -1.47 1008.09 3.51 5.89 5.39 0.09

(49.00) (8.05) (9.40) (6.78) ( 1.28) (8.95) (1.79) (0.84)
[-0.21] [0.22] [-0.10] [0.06] [-0.20] [-0.25] [-0.06]

Summer
38.70 27.34 16.46 998.76 3.40 4.27 5.31 0.46

(27.08) (4.41) (5.50) (4.34) (1.33) (7.53) (1.62) (2.70)
[0.01] [0.52] [-0.12] [0.02] [-0.19] [-0.10] [-0.01]

Fall
49.93 15.42 5.82 1013.51 3.14 3.99 4.87 0.15

(36.19) (9.34) (9.81) (8.00) (1.43) (7.43 ) (1.53) [1.99]
[0.04] [0.26] [-0.25] [-0.07] [-0.19] [-0.12] [-0.07]

Winter
58.77 0.07 -14.62 1021.05 3.26 4.89 4.58 0.00

(56.65) (5.03) (7.07) (6.68) (1.29) (8.46) (1.56) (0.01)
[-0.03] [0.57] [-0.40] [0.11] [-0.27] [-0.33] [-0.01]

Testing sets

Spring
54.99 16.87 0.82 1005.28 3.64 11.59 5.46 0.09

(42.81) (6.33) (10.29) (6.09) (1.24) (20.94) (1.74) (0.84)
[-0.28] [0.54] [-0.57] [-0.01] [-0.33] [-0.04] [-0.02]

Summer
41.61 26.96 17.16 997.93 3.31 4.95 5.41 0.32

(29.42) (3.95) (4.16) (3.33) (1.28) (8.08) (1.50) (1.21)
[0.06] [0.57] [0.30] [0.07] [-0.29] [-0.02] [-0.01]

Fall
37.77 13.75 4.25 1014.92 3.25 4.50 4.89 0.17

(32.64) (7.74) (10.71) (6.06) (1.40) (11.34) (1.47) (1.79)
[-0.09] [0.16] [-0.12] [-0.16] [-0.15] [-0.11] [-0.02]

Winter
56.48 -0.31 -14.61 1021.99 3.18 5.09 4.67 0.01

(83.69) (4.14) (6.51) (4.86) (1.25) (7.75) (1.56) (0.08 )
[-0.15] [0.35] [-0.36] [0.05] [-0.22] [-0.32] [-0.02]

Table S5 reports some important statistics of each estimated regimes for the four seasons,
including thes ample sizes, the fitting RMSEs and the sample means of PM2.5 and the regres-
sion covariates of the estimated regimes.
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TABLE S5
The sample sizes, the fitting RMSEs and the sample means of PM2.5 and the regression covariates in the four
seasons. The numbers inside the parentheses are the sample standard deviations of the sample means above

them. RAIN was not included in seasons except for summer since their precipitation was rather sparse.

T RMSE PM2.5 TEMP DEWP PRES log(BLH) RAIN

Sp
ri

ng

1 119 10.4
67.7 15.5 10.9 1006.7 5.6

(40.0) (5.5) (4.1) (5.9) (1.3)

2 793 12.7
61.5 15.9 2.6 1006.6 5.0

(55.7) (8.8) (7.0) (6.6) (1.7)

3 528 10.6
23.7 15.9 -10.5 1010.6 5.9

(23.0) (7.4) (4.7) (6.5) (1.8)

Su
m

m
er

1 180 9.4
61.9 28.6 23.6 995.9 4.2 0.12

(37.3) (3.4) (1.1) (3.2) (5.6) (0.6)

2 910 8.4
42.6 27.1 17.9 998.6 2.7 0.2

(22.8) (4.4) (2.9) (4.2) (3.2) (1.2)

3 343 4.7
16.1 27.1 8.8 1000.6 8.3 8.6

(10.6) (4.6) (3.4) (4.3) (13.0) (10.1)

Fa
ll

1 252 9.2
61.1 15.7 13.3 1011.3 3.8

(36.9) (5.1) (4.2) (5.1) (0.9)

2 738 8.9
53.7 18.5 9.4 1011.4 5.0

(36.2) (9.1) (6.2) (6.4) (1.5)

3 448 9.1
37.4 10.2 -4.4 1018.3 5.3

(32.1) (9.4) (8.8) (9.5) (1.6)

W
in

te
r

1 288 16.3
94.4 3.0 -9.7 1018.0 5.0

(62.1) (5.2) (6.8) (5.8) (1.7)

2 194 11.2
54.9 1.5 -16.2 1021.1 5.2

(43.3) (6.0) (5.7) (7.4) (1.7)

3 760 11.7
34.5 -2.0 -21.6 1025.9 4.8

(45.0) (4.9) (6.6) (7.0) (1.6)

4 157 15.8
71.6 -3.6 -16.2 1022.2 3.5

(55.3) (4.4) (5.3) (7.3) (1.0)
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Fig S4: Estimated regression coefficients (indicated by dots) and their 95% confidence inter-
vals (indicated by bars) of each regime. The estimated coefficients of the Lag term were all
significantly above 0 and thus not reported in this figure.
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The following Figure S5 displays the estimated meteorological regimes on PM2.5. It shows
that in spring, for instance, Regime 1 had the highest DEWP and the highest proportion of
CV among the three regimes, which is a known condition to encourage secondary generation
of PM2.5 and to constitute a unfavourable atmospheric diffusion condition, and thus resulted
in high PM2.5. Regime 2 had reduced percentages of CV and lower DEWP level compared
to Regime 1, which alleviated the polluting level and led to better diffusion of PM2.5 and
can be regarded as a transitional state from either the high pollution to low pollution or
vice versa. In Regime 3, the northerly winds occupied the leading position and DEWP was
significantly lower. It is noted that the northerly wind brings cleaner and cooler air from the
north, and under such circumstances the PM2.5 concentration could be effectively reduced
via the removal process at a lack of secondary generation. Therefore, Regime 3 represented
a cleaning regime.

It is found that the regime-splitting for summer and fall shared the same pattern with the
spring, namely Regime 1 with high PM2.5 level accompanied by a large proportion of CV and
high DEWP, indicating an air stagnation; Regime 2 is a transitional regime which had reduced
DEWP and increased winds with about 50% southerly winds; and Regime 3 (cleaning) tended
to had significantly large amount of strong northerly, in particular northwesterly wind and
low DEWP, which are known favorable conditions to lower the PM2.5. For winter, Regime
1 was still the most polluting regime and Regime 3 represented the cleaning regimes as the
other seasons. However, the transitional regime was divided to two regimes: Regimes 2 and
4 with dominated wind directions being southeasterly and southwesterly wind, respectively,
representing two different transitional modes. Regime 4 had more southwesterly wind which
would bring the accumulated PM2.5 along the foot of Taihang Mountain to Beijing, bringing
in more transported air pollutants. As validated in Figure S5, Regime 4 of winter indeed had
heavier PM2.5 than Regime 2.
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Fig S5: For each regime, the bars indicate sample means of PM2.5 (scales on the left side), TEMP,
DEWP and log(BLH) (scales on the left side) and the lengths of error bar are twice of the sample
deviations. The wind rose plots displays distribution of wind directions (via width of angles) and
average speed (via length of radius). Sample sizes of each regime are reported in the parentheses of its
subtitle.

(a) Spring

(b) Summer

(c) Fall

(d) Winter
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