
Supplemental Material for “Transfer Learning with General

Estimating Equations”

Notations Throughout the supplementary material, we use c and C with different sub-

scripts to denote generic finite positive constants and may be different in different uses. The

empirical measure is denoted as Enp¨q. We use 1pAq as the indicator function of an event A.

For any vector v “ pv1, ¨ ¨ ¨ , vdqT, let vb2 “ vvT and }v}p denote its Lp norm. For a func-

tion f : X Ñ R, its supreme is denoted by }f}8 “ supxPX fpxq, and its Lp-norm under a

distribution F that generates a random variable X is denoted by }f}LppF q “ pEF |fpXq|pq1{p

for any p ě 1. For two sequences of positive numbers tanu and tbnu, we write an À bn if

there exists a positive constant C such that an ď Cbn. Let PdimpF q be the the Pseudo

dimension (Pollard, 1990) of the function class F . The ε-covering number of the function

class F with respect to the metric d is denoted as Ndpε,Fq.

A Proofs for Section 3

A.1 Proof of Theorem 3.1

In the sequel, we use E0 and Eτ to denote the expectation under the true distribution F

and the regular parametric submodel Fτ , respectively. The density function for Fτ is

fτ pwq “ pδp1 ´ pq1´δfτ py|xq1´δqτ pxqδpτ pxq1´δ,

and the score function is given by

Sτ pwq “ p1 ´ δqSτ py|xq ` δS1
τ pxq ` p1 ´ δqS0

τ pxq,

where Sτ py|xq “ B log fτ py|xq{Bτ , S0
τ pxq “ B log pτ pxq{Bτ and S1

τ pxq “ B log qτ pxq{Bτ ,

satisfying

EτtSτ pY|Xq|Xu “ 0, EτtδS1
τ pXqu “ 0 and Eτtp1 ´ δqS0

τ pXqu “ 0. (A.1)

(i) Since Eτtg̃pW ,θ, rpFτ qqu “ 0, differentiating with respect to τ gives

B

Bτ
Eτtg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
“

B

Bτ
Eτtg̃pW ,θ, r0qu

ˇ

ˇ

ˇ

τ“0
`

B

Bτ
E0tg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
. (A.2)

Under Condition 2 and the mean-squared differentiability of the submodel Fτ , for any

θ P Θ0, the differentiation and integration operators are exchangeable (see, e.g., Ibragimov

and Has’ Minskii, 1981) and it holds that

B

Bτ
Eτtg̃pW ,θ, r0qu

ˇ

ˇ

ˇ

τ“0
“ E0tg̃pW ,θ, r0qS0pW qu. (A.3)
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We now calculate the right-hand side of (A.2).

Eτtg̃pW ,θ, rpFτ qqu “ Eτ

"

1 ´ δ

1 ´ p
gpZ,θqrpFτ q

*

“ Eτ

"

δ

p
gpZ,θq

*

.

Differentiating with respect to τ gives

B

Bτ
Eτtg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
“

B

Bτ
Eτ

"

δ

p
gpZ,θq

*

ˇ

ˇ

ˇ

τ“0

“ E0

"

δ

p
gpZ,θqS0pW q

*

“ E0

"

δ

p
gpZ,θqS0pXq `

δ

p
gpZ,θqS0pY|Xq

*

“ E0

"

δ

p
m0pX,θqS0pW q

*

` E0 tg̃pW ,θ, r0qS0pY|Xqu ,

(A.4)

where the first term of (A.4) is from (A.1) and iterated expectation. We proceed to find a

function hpW q such that the second term is equivalent to E0thpW qS0pW qu. Note that

E0 tg̃pW ,θ, r0qS0pY|Xqu “ E0 rg̃pW ,θ, r0qtS0pW q ´ p1 ´ δqS0pXqus

“ E0 tg̃pW ,θ, r0qS0pW qu ´ E0 tg̃pW ,θ, r0qS0pXqu ,

and the second term is equivalent to

E0 tg̃pW ,θ, r0qS0pXqu “ E
"

1 ´ δ

1 ´ p
r0pXqm0pX,θqS0pXq

*

“ E
"

1 ´ δ

1 ´ p
r0pXqm0pX,θqS0pW q

*

,

(A.5)

where the first equality is by the iterated expectation, and the second equality is because

of (A.1). Combining (A.2)-(A.5) gives

B

Bτ
E0tg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
“ E0 tφpW ,θ,η0qS0pW qu ,

where η0pxq “ pr0pxq,m0pxqq and

φpw,θ,ηq “
δ

p
mpx,θq ´

1 ´ δ

1 ´ p
rpxqmpx,θq,

It is straightforward to see that E0tφpw,θ,η0qu “ 0 for any θ P Θ0. In addition, because

the set of score functions is dense in L2pF q, the influence function φ is uniquely determined.

(ii) Let Ψpw,θ,ηq “ g̃pw,θ, rq ` φpw,θ,ηq. Since E0tφpw,θ,η0qu “ 0, replacing F by

Fτ gives Eτtφpw,θ,ηpFτ qqu “ 0. Differentiating this identity with respect to τ “ 0 gives

0 “
B

Bτ
Eτtφpw,θ,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0
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“
B

Bτ
Eτ tφpW ,θ,η0qu `

B

Bτ
E0tφpw,θ,ηpFτ qqu (A.6)

“ E0 tφpW ,θ,η0qS0pW qu `
B

Bτ
E0tφpw,θ,ηpFτ qqu

“
B

Bτ
E0tg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
`

B

Bτ
E0tφpw,θ,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0
(A.7)

“
B

Bτ
E0tΨpW ,θ,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0
,

where (A.6) is from differentiation by parts and (A.7) is from the result in (i).

(iii) First, Ψ can be rewritten as

Ψpw,θ,ηq “
δ

p
gpz,θq `

"

1 ´ δ

1 ´ p
rpxq ´

δ

p

*

tgpz,θq ´ mpx,θqu.

Because EF tδgpZ,θ0qu “ 0, we have

EF tΨpW ,θ0,ηqu “ EF

„"

1 ´ δ

1 ´ p
rpXq ´

δ

p

*

tgpz,θq ´ mpX,θqu

ȷ

“ EF

„"

1 ´ δ

1 ´ p
rpXq ´

δ

p

*

tm0pX,θq ´ mpX,θqu

ȷ

,

implying that EF tΨpW ,θ0,ηqu “ 0 if either rpxq
a.e.
“ r0pxq or mpx,θ0q

a.e.
“ m0px,θ0q.

Let ∆px,θq “ m0px,θq ´mpx,θq “ p∆1, . . . ,∆rqT. Since EF rtp1´pq´1p1´ δqr0pXq ´

p´1δu∆pX,θqs “ 0, we have

|EF tΨjpW ,θ0,ηqu| “

ˇ

ˇ

ˇ

ˇ

EF

„"

1 ´ δ

1 ´ p
r0pXq ´

1 ´ δ

1 ´ p
rpXq

*

∆jpX,θ0q

ȷˇ

ˇ

ˇ

ˇ

“ |EP rtr0pXq ´ rpXqu∆jpX,θ0qs|

ď EP t|r0pXq ´ rpXq||∆jpX,θ0q|u

ď }r ´ r0}L2pPXq}mjp¨,θ0q ´ m0jp¨,θ0q}L2pPXq, (A.8)

which completes the proof.

B Proofs for Section 4

B.1 Proof of Lemma 4.1

According to Fenchel dual representation (Rockafellar, 1997), each convex ϕ can be ex-

pressed by:

ϕpuq “ sup
vPR

tuv ´ ϕ˚pvqu.

By the definition of DϕpQ}P q, we have

DϕpQ}P q “

ż

ϕ

ˆ

q0pxq

p0pxq

˙

p0pxqdx
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“

ż

sup
vpxq

ˆ

vpxq
q0pxq

p0pxq
´ ϕ˚pvpxqq

˙

p0pxqdx

“ sup
v

ż

tvpxqq0pxq ´ ϕ˚pvpxqqp0pxqudx

ě sup
v

EQtvpXqu ´ EP tϕ˚pvpXqqu,

where the supremum in the last two equality is taken over all measurable functions from

X Ñ dompϕ˚q. Since for each fixed x in the third equality, vpxqq0pxq ´ ϕ˚pvpxqqp0pxq is

maximized at v˚pxq “ ϕ´1
˚ pq0pxq{p0pxqq “ ϕ´1

˚ pr0pxqq. By the convex duality theorem, we

have v˚pxq “ ϕ1pr0pxqq. Therefore,

ϕ1pr0q “ argmax
v

rEQtvpXqu ´ EP tϕ˚pvpXqqus,

which implies that

r0 “ argmin
r

rEP tℓ1,ϕprq ´ EQtℓ2,ϕprquus,

where the argmin is taken over all nonnegative functions with the domain X .

B.2 Proof of Theorem 4.1

Our proof proceeds in several steps. In Step 1, we present an error decomposition for

}pr´r0}2L2pP q
. In Steps 2 - 4, we investigate the deviations between the sample and population

excess risks via empirical process theories. Finally, we bound the empirical estimation error

by the L2 error in Step 5. Throughout the proof, we assume M1 ě B1 without loss of

generality. For any r P FN , we define its empirical error as }r ´ r0}2n “ 1
n

řn
i“1prpXiq ´

r0pXiqq2.

Step 1: Error decomposition. Denote ℓ1pr,xq “ ϕ˚ tϕ1prpxqqu , ℓ2pr,xq “ ´ϕ1prpxqq.

Let L1prq “ EP tℓ1pr,Xqu, L2prq “ EQ tℓ2pr,Xqu, and pL1prq “ n´1
řn

i“1 ℓ1pr,Xiq, pL2prq “

m´1
řn`m

i“n`1 ℓ2pr,Xiq. The population and the sample criterion function are:

Lprq :“ L1prq ` L1prq and pLprq :“ pL1prq ` pL2prq.

For any r1, r2 : X Ñ r0,8q, let

dϕpr1, r2q :“ Lϕpr1q ´ Lϕpr2q and pdϕpr1, r2q “ pLϕpr1q ´ pLϕpr2q.

Given a function class FN , we define the best approximation for r0 realized by FN and the

corresponding approximation error as:

rN :“ argmin
rPFN

}r ´ r0}8 and εN :“ }rN ´ r0}8.

Note that rN and εN are both deterministic and depend only on the architecture of FN

and the target function r0.

4



By the compactness of X and Condition 4, it can be shown that there exists a positive

constant L, such that for every r, r1 P FN ,

|ℓipr,xq ´ ℓipr
1,xq| ď L|rpxq ´ r1pxq|, pi “ 1, 2q,

for all x P X , and there exists positive constants c1 and c2 such that

c1}pr ´ r0}2L2pP q ď Liprq ´ Lipr0q ď c2}pr ´ r0}2L2pP q, pi “ 1, 2q, .

Therefore, we have the following error decomposition:

c1}pr ´ r0}2L2pP q ďdϕ ppr, r0q “ dϕ ppr, rN q ` dϕ prN , r0q ď dϕ ppr, rN q ` c2ε
2
N . (B.1)

We next bound dϕ ppr, rN q by analyzing the process suprPFN
|dϕ pr, rN q ´ pdϕ pr, rN q |,

mainly based on techniques of the local Rademacher complexity analysis of empirical risk

minimization (Bartlett et al., 2005 and Koltchinskii, 2011). First, we introduce some quan-

tities that are necessary in this approach. Let tεiu
n`m
i“1 be i.i.d symmetric, t´1, 1u-valued

random variables that are independent of tXiu
n`m
i“1 . For any function class F , we define

RnpFq :“ sup
fPF

1

n

n
ÿ

i“1

εifpXiq, RmpFq :“ sup
fPF

1

m

n`m
ÿ

i“n`1

εifpXiq.

The Rademacher complexities are defined as sRnpFq “ E tRnpFqu and sRmpFq “ E tRmpFqu,

where the expectations are taken over both the Xis and the εis. The empirical Rademacher

complexities, which are conditioned on the data, are denoted by pRnpFq “ Eε tRnpFqu and
pRmpFq “ Eε tRmpFqu. For the candidate function class FN , let the shifted (centered)

function class be

F˚
N :“ tr ´ rN : r P FNu .

The population version of the localized Rademacher complexities are defined as:

sRnpδ,F˚
N q :“ sRn

␣

f : f P F˚
N and }f}L2pP q ď δ

(

and sRmpδ,F˚
N q :“ sRm

␣

f : f P F˚
N and }f}L2pQq ď δ

(

,

where δ ą 0 is a localization scale. Similarly, the empirical localized Rademacher complex-

ities are defined as:

pRnpδ,F˚
N q :“ pRn tf : f P F˚

N and }f}n ď δu and pRmpδ,F˚
N q :“ pRm tf : f P F˚

N and }f}m ď δu .

A crucial parameter in the localized Rademacher complexity approach is the critical radius,

which is defined as δn and δm that satisfy the following inequalities:

δ2n ě sRnpδn,F˚
N q, δ2m ě sRmpδm,F˚

N q. (B.2)

For j “ 1 and 2, denote the supreme deviations between pLjprq ´ pLjpr0q and Ljprq ´Ljpr0q

restricted in the localized ball centered at r0 with the radius s as

λj
N psq “ sup

}r´rN }L2pP qďs

∣∣∣´ pLjprq ´ pLjprN q

¯

´ pLjprq ´ LjprN qq ,
∣∣∣ (B.3)
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and denote the supreme deviations between dϕpr, rN q and pdϕpr, rN q restricted in dϕpr, rN q

as

λN psq “ sup
}r´rN }L2pP qďs

∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ , (B.4)

where s ą 0 is a radius to be varied.

Step 2. Tail bound of λN psq . We first estimate an upper bound of the expectation of

λN psq for the s in the range rδn _ δm,8q. Let

Gj
N psq “

␣

g : g “ ℓjprq ´ ℓjpr0q for r P FN and dϕpr, r0q ď s2
(

for j “ 1 and 2. Then by standard symmetrization arguments, we have

E
␣

λ1
N psq

(

ď 2 sRn

␣

G1
N psq

(

and E
␣

λ2
N psq

(

ď 2 sRm

␣

G2
N psq

(

. (B.5)

Since both ϕ˚ ˝ϕ1 and ϕ1 are L-Lipschitz continuous, by the Ledoux-Talagrand contraction

inequality due to Ledoux and Talagrand (1991), it holds that sRn

␣

G1
N psq

(

ď 2L sRnps,F˚
N q

and sRm

␣

G2
N psq

(

ď 2L sRmps,F˚
N q. Therefore,

E
␣

λ1
N psq

(

ď 4L sRnps,F˚
N q and E

␣

λ2
N psq

(

ď 4L sRmps,F˚
N q.

Since F˚
N is star-shaped around rN (if r P F˚

N , then for any α P p0, 1q, αr P F˚
N ), the function

sRnps,F˚
N q{s is non-increasing with resepct to s according to Lemma 13.6 of Wainwright

(2019). As s ą δn and δ2n ą sRn tδn,F˚
Nu, it holds that sRnps,F˚

N q ď sδn. Similarly, we also

have sRmps,F˚
N q ď sδm for s ě δm , which delivers the upper bounds

E
␣

λ1
N psq

(

ď 4Lsδn and E
␣

λ2
N psq

(

ď 4Lsδm p@s ě δn _ δmq. (B.6)

We next bound the deviation between λj
N psq and E

!

λj
N psq

)

for j “ 1 and 2. Note

that for any r P FN , we have }ℓjprq ´ ℓjprN q}8 ď L}r ´ rN}8 ď 2M1L, by the Lipschitz

condition of ϕ˚ ˝ ϕ1 and ϕ1 and the boundness of r P FN . In addition, the variance of

ℓjprq ´ ℓjprN q can be upper bounded by

Varpℓjprq ´ ℓjprN qq ďE
␣

pℓjprq ´ ℓjprN qq2
(

ďL2
´

}r ´ rN}2L2pP q ` }r ´ rN}2L2pQq

¯

ď2pM1Lq2}r ´ rN}2L2pP q ď 2pM1Lsq2, (B.7)

where the second inequality is implied by the Lipschitz condition, the third inequality is

due to }f}2L2pQq
“ }f ¨ r0}2L2pP q

ď B2}f}2L2pP q
for any f : X Ñ R, and the last inequality is

because of the localization condition }r ´ rN}L2pP q À dϕpr, rN q ď s. Consequently, for any

u ą 0 it holds that

P
!

λj
N psq ě Etλj

N psqu ` u
)

ď2 exp

ˆ

´pn ^ mqu2

8eVarpℓϕprq ´ ℓϕpr0qq ` 8M1Lu

˙
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ď2 exp

ˆ

´
Ctpn ^ mqu2

pM1Lsq2 ` M1Lu

˙

,

for some universal constant Ct ą 0, by applying Talagrand’s concerntration equality (Ta-

lagrand, 1994) and (B.7). Therefore, we have

`

P
␣

λ1
N psq ě 4Lsδn ` u

(

_ P
␣

λ2
N psq ě 4Lsδm ` u

(˘

ď 2 exp

ˆ

´
Ctpn ^ mqu2

pM1Lsq2 ` M1Lu

˙

,

for any s ě pδn _ δmq and u ą 0. Since

λN psq ď λ1
N psq ` λ2

N psq

for any s ě 0, we have

P tλN psq ě 4Lspδn ` δmq ` uu ď 4 exp

ˆ

´
Ctpn ^ mqu2

p2M1Lsq2 ` 2M1Lu

˙

, (B.8)

for any s ě pδn _ δmq and u ą 0. Denoting δN :“ δn ` δm and setting s “ δN , u “ M1Lδ
2
N ,

then we have

P
␣

λN pδN q ě C1δ
2
N

(

ď 4 exp
`

´C2pn ^ mqδ2N
˘

, (B.9)

where C1 “ p4 ` M1qL and C2 “ Ct{6. In addition, setting u “ M1LsδN yields

P tλN psq ě C1sδNu ď 2 exp

ˆ

´
Ctns

2δ2N
s2 ` sδN

˙

ď 4 exp
`

´C2pn ^ mqδ2N
˘

, (B.10)

for any s ě δN .

Let

A1 “

!

D r P FN : }r ´ rN}L2pP q ď δN and
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ ě C1δ
2
N

)

. (B.11)

Combining (B.4) with (B.9) yields that

PpA1q ď 4 exp
`

´C2pn ^ mqδ2N
˘

. (B.12)

The above tail bound (B.10) controls the largest deviation
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ for r

within the local ball }r ´ rN}L2pP q ď δN . It remains to estimate an tail bound of the

deviation
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ outside this local region. We define the following event

A2 “

!

D r P FN : }r ´ rN}L2pP q ą δN and
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ ě 2C1δN}r ´ rN}L2pP q

)

However, bounding PpA2q is more delicate, since the function r that satisfies the requirement

in A2 is random. In the following step, we will use a “peeling” argument to address the

problem.
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Step 3: Bound the event A2 with the peeling argument. For m P N`, we define the

events

Sm :“
␣

r P FN : 2m´1δN ă }r ´ rN}L2pP q ď 2mδN
(

.

By the boundness of r P FN , we have }r ´ rN}L2pP q ď 2M1. Hence, any r P FN X
␣

}r ´ rN}L2pP q ą δN
(

must locate in some Sm for m P JKK, where K ď 2 logpM1{δN q ` 1.

Since A2 is a subset of YK
m“1Sm, by the union bound we have PpA2q ď

řM
m“1 P pA2 X Smq.

Note that if rm P A2 X Sm, then we can take sm “ 2mδN , and rm satisfies

}rm ´ rN}L2pP q ď sm and
∣∣∣pdϕprm, r0q ´ dϕprm, r0q

∣∣∣ ě 2C1δN}r ´ rN}L2pP q ą C1δNsm,

where the last inequality is due to 2}r ´ rN}L2pP q ą 2m`1δN ą sm “ 2mδN . As a result,

A2 X Sm Ă tλN psmq ě C1smδNu . Then according to (B.10), we obtain

PpA2q ď

K
ÿ

m“1

PpA X Smq ď 2
K
ÿ

m“1

exp
`

´C2pn ^ mqδ2N
˘

ď 4 expp´C2pn ^ mqδ2N ` logKq ď 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

, (B.13)

where the last inequality holds provided that

C2pn ^ mqδ2N
2

ě log p2 logpM1{δN q ` 1q . (B.14)

The complement of A2 is composed by Ac
2 “ B1 Y B2, where

B1 “
␣

r P FN : }r ´ rN}L2pP q ď δN
(

and B2 “

!

r P FN :
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ ă 2C1δN}r ´ rN}L2pP q

)

.

Therefore, (B.13) implies that

PpB1 Y B2q ě 1 ´ 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

.

If pr P B1, then we have dppr, rN q ď c2δ
2
N since dppr, rN q ď c2}pr ´ rN}2L2pP q

. Moreover, if

pr P B2, since c1}pr ´ rN}2L2pP q
ď dϕppr, rN q, and pdppr, rN q ď 0 by the definition of pr, we have

dϕppr, rN q ă 4c´2
1 C2

1δ
2
N . This together with (B.12) leads to

P
␣

dϕppr, rN q ă pc2 _ 4c´2
1 C2

1 qδ2N
(

ě 1 ´ 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

. (B.15)

Let C3 “ c2 _ 4c´2
1 C2

1 and C4 “ C2{2, combining (B.1) and (B.15), we obtain

P
!

c1}pr ´ r0}2L2pP q ď C3δ
2
N ` c2ε

2
N

)

ě 1 ´ 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

. (B.16)
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Therefore, the estimation error }pr ´ r0}L2pP q relies on the critical radius δN and the ap-

proximation error εN . In the next step, we provide an upper bound of the critical radius

δN .

Step 4: Estimation of the critical radius δN . In this step, we first estimate the

empirical critical radiuses pδn and pδm satisfying

pδ2n ě k pRnppδn,F˚
N q, pδ2m ě k pRmppδm,F˚

N q, (B.17)

where k is a fixed positive constant, pRnpδn,F˚
N q and pRnpδm,F˚

N q are localized empirical

Rademacher complexities, respectively, then use Proposition 14.25 of Wainwright (2019) to

obtain that

PpC4δn ď pδn ď C5δnq ě 1 ´ C6 expp´C7nδ
2
nq (B.18)

for some generic constants C4, ¨ ¨ ¨ , C7 ą 0.

By the Dudley’s chaining, we have

pRnps,F˚
N q ď inf

0ăαăs

"

4α `
12
?
n

ż s

α

b

log
`

N2pε,F˚
N ,Xn

1 qdε
˘

*

, (B.19)

whereXn
1 “ pX1, ¨ ¨ ¨ ,Xnq. Since for any }f}n ď max1ďiďn |fpXiq|, we haveN2pε,F˚

N ,Xn
1 q ď

N8pε,F˚
N ,Xn

1 q. Since }f}8 ď 2M for f P F˚
N , according to Theorem 12.2 of Anthony and

Bartlett (1999), we have

log pN8pε,F˚
N ,Xn

1 qq ď PdimpF˚
N q

ˆ

4eMn

εPdimpF˚
N q

˙

.

When n ą PdimpF˚
N q, let α “ s

a

PdimpF˚
N q{n in (B.19), we have

inf
0ăαăs

"

4α `
12
?
n

ż s

α

b

log
`

N2pε,F˚
N ,Xn

1 qdε
˘

*

ď 16s

d

PdimpF˚
N q

n

ˆ

log
4eM

s
`

3

2
log n

˙

.

Therefore, if s ě 1{n and n ě p4eMq2, the localized empirical Rademacher complexity can

be upper bounded by

pRnps,F˚
N q ď 32s

c

PdimpF˚
N q

n
logpnq.

With such result, we find that the pδn satisfying pδ2n ě pFnppδn,F˚
N q can be taken as

pδn “ 32k

c

PdimpF˚
N q

n
logpnq ` u “ 32k

c

PdimpFN q

n
logpnq ` u, (B.20)

for any u ě 0. The empirical critical value δ̂m can be taken similarly. Using (B.16), (B.18),

and (B.20), we obtain that for any u ě 0,

P
!

}pr ´ r0}2L2pP q ď C8

`

ξN ` ϵ2N ` u
˘

)

ě 1 ´ C9 expp´NξN ´ Nuq, (B.21)
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for some universal constants C8 and C9 ą 0, where ξN represents the stochastic error in

the estimation and is defined as

ξN “ PdimpFN q

ˆ

logpnq

n
`

logpmq

m

˙

.

SinceNξN — PdimpFN q logpNq, we have expp´NξN q ă C´1
9 for large enoughN . Therefore,

(B.21) implies that for large enough N and any t ě 0, it holds that

P
"

}pr ´ r0}2L2pP q ď C8

ˆ

ξN ` ϵ2N `
t

N

˙*

ě 1 ´ expp´tq.

Step 5: Bound the empirical error by the L2 error.

In this step, we show that with high probability, the empirical error }pr ´ r}n is at most

twice the L2 error if r is in a given neighboring ball around r0.

Let gprq “ pr ´ r0q2 for every r P FN . Then since gprq “ pr ` r0qpr ´ r0q, we have

|gprq| ď 3M1|r ´ r0| ě 9M2
1 , implying that gprq has a Lipschitz constant of 3M1, and gprq

is a bounded function. Furthermore, if r is restricted to a radius with }r ´ r0}L2pP q ď ξ for

some fixed constant ξ ą 0, then

Vartgprqu ď Etg2prqu ď Etpr ´ r0q4u ď 9M2
1 ξ

2.

By applying Theorem 2.1 of Bartlett et al. (2005), which is based on Talagrand’s concen-

tration, for every r with }r ´ r0}L2pP q ď ξ, it holds that

}r ´ r0}2n ´ }r ´ r0}L2pP q ď 3 pRnpgprq : r P FN , }r ´ r0}L2pP q ď ξq ` 3M1ξ

c

2t

n
`

12M2
1 t

n

ď 18M1
pRnpξ,F˚

N q ` 3M1ξ

c

2t

n
`

12M2
1 t

n
, (B.22)

with probability at least 1 ´ e´t where the second inequality is due to pr ´ r0q P F˚
N , the

Lipschitz continuity of gprq, and iterated expectations.

Now, suppose that the radius ξ satisfies

ξ2 ě 36M1
pRnpξ,F˚

N q, and ξ2 ě
72M2

1 t

n
, (B.23)

then (B.22) implies that with probability at least 1 ´ e´t,

}r ´ r0}2n ď ξ2{2 ` ξ2{2 ` ξ2{6 ă 2ξ2 for all r satisfies (B.23) and }r ´ r0}L2pP q ď ξ.

As shown in the calculation of the previous step, for large enough n,

ξ “ C8pξN ` ϵ2N `
t

N
q

satisfies the requirement in (B.23) for any given t ą 0. This together with Pp}r´r0}L2pP q ď

ξq ą 1´e´t implies that Pp}r´r0}2n ď ξq ą 1´2e´t, which completes the proof of Theorem

4.1.
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B.3 Proof of Theorem 4.2

We will apply Yang-Barron’s version of Fano’s method (Yang and Barron, 1999) to derive

the lower bound for the density ratio estimation.

Part 1. Let us first consider a sub-class of Mdpβ1, B1q defined by

M1 “

"

pP0,Qq : P0 is the uniform distribution , dQ{dP P Hβ1pX , B1q, inf
xPX

dQpxq ą c0 ą 0

*

.

Then for any two distinct elements pP0,Q1q and pP0,Q2q in M1, their KL-divergence

D ppP0,Q1q}pP0,Q2qq can be bounded by

D ppP0,Q1q}pP0,Q2qq “DpQ1}Q2q “

ż

xPX
log

ˆ

dQ1pxq

dQ2pxq

˙

dQ1pxq

ď

ż

xPX

ˆ

dQ1pxq

dQ2pxq
´ 1

˙

dQ1pxq “

ż

xPX

ˆ

dQ1pxq

dQ2pxq

˙2

dQ2pxq ´ 1

“

ż

xPX

ˆ

pdQ1pxq ´ dQ2pxqq

dQ2pxq

˙2

dQ2

ďc´1
0

ż

xPX
pdQ1pxq ´ dQ2pxqq

2 dx. (B.24)

The above bound together with D
`

pPbn
0 ,Qbm

1 q}pPbn
0 ,Qbm

2 q
˘

“ mDpQ1}Q2q implies

that for any ε ą 0, the ε-covering number of M1 in the square-root KL divergence has an

upper bound:

NKLpε,M1q ď NL2pµq

ˆ
c

c0
m
ε,Q1

˙

,

where Q1 is the function class of Q that is the second element of pP,Qq P M1. By definition,

we know that Q1 is a sub-class of Hβ1pX , B1q, whose covering number is known from

classical theory (see e.g., Giné and Nickl, 2021). Therefore we obtain

logNKLpε,M1q ď logNL2pµq

ˆ
c

c0
m
ε,Hβ1pX , B1q

˙

—

ˆ

B
?
m

ε

˙
d
β

. (B.25)

Applying Yang-Barron’s version of Fano’s method, we choose pεn, δnq that satisfies

ε2m ě NKLpε,M1q and logMp2δm; d,Θq ě 4ε2m ` log 2. (B.26)

Since the estimand is the density ratio function that belongs to Hβ1pX , B1q, we have

logMp2δm; d,Θq — p
1

δm
q
d
β . (B.27)

With (B.25) and (B.27), pεn, δnq that ensures (B.26) can be specified as ε2m — m
d

2β`d and

δ2m — m
´

2β1
2β1`d .
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According to Yang and Barron (1999), a minimax lower bound for the sub-class M1 is

given by

inf
pr

sup
pP,QqPM1

E}pr ´ dQ{dP}2 ě
δ2m
2

— m
´

2β1
2β1`d . (B.28)

Part 2. Let us first consider another sub-class of Mdpβ1, B1q defined by

M2 “

!

pP,Q0q : Q0 is the uniform distribution , dQ0{dP P Hβ1pX , B1q, 0 ă c1 ă dPpxq ă c2 ă 8

)

.

For any two distinct elements pP1,Q0q and pP2,Q0q in M2, with the same argument as

in (B.24), we can obtain

D ppP0,Q1q}pP0,Q2qq ď c´1
1

ż

xPX
pdP1pxq ´ dP2pxqq

2 dx.

Since dQ0pxq “ 1, we write dPipxq “ r´1
i pxq with ripxq P Hβ1pX , B1q for i “ 1, 2. Then the

above quantity can be upper bounded by

c´1
1

ż

xPX
pdP1pxq ´ dP2pxqq

2 dx “c´1
1

ż

xPX

ˆ

1

r1pxq
´

1

r2pxq

˙2

dx

ďc42c
´1
1

ż

xPX
pr1pxq ´ r2pxqq2dx. (B.29)

Therefore, the square-root covering number of M2 in KL-divergence can be upper

bounded by the covering number of Hβ1pX , B1q in the L2pµq-norm, leading to

logNKLpε,M2q ď logNL2pµq

ˆ

c

c1
c42n

ε,Hβ1pX , B1q

˙

—

ˆ

B
?
n

ε

˙
d
β

. (B.30)

for any ε ą 0. The rest procedure is similar to Part I and we omit here for simplicity. The

conclusion is for the sub-class M2, a minimiax lower bound is given by

inf
pr

sup
pP,QqPM2

E}pr ´ dQ{dP}2 ě
δ2n
2

— n
´

2β1
2β1`d . (B.31)

Since M1 and M2 are both sub-class of Mdpβ1, B1q, their minimax lower bounds are

also lower bounds of Mdpβ1, B1q. Combining the results in Part I and II, we obtain:

inf
pr

sup
pP,QqPMdpβ1,B1q

E}pr ´ dQ{dP}2Á n
´

2β1
2β1`d ` m

´
2β1

2β1`d — N
´

2β1
2β1`d , (B.32)

which completes the proof of Theorem 4.2.

B.4 Proof of Theorem 4.3
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For any given distribution P̃Y supported on R with a known density p̃0pyq, we let

P̃ “ P̃Y ˆPX be the distribution of pỸ ,Xq for X „ PX and Y „ P̃Y , which is independent

of X, and let

r̃0py,xq “
p0py,xq

p0pxqp̃0pyq
,

be the true density ratio function between P and P̃ . Then, under Conditions 5 and 6,

applying Theorem 4.2 leads to

ENtppr̃ ´ r̃0q2u “ Op

ˆ

N
´

2β2
2β2`d`1 logpNq

˙

,

for the estimator pr̃. Since p̂Y |X “ pr̃p̃Y and pY |Xpy,xq “ r̃0p̃Y , where p̃Y is a bounded

function, we have

ENtpp̂Y |X ´ pY |Xq2u “ Op

ˆ

N
´

2β2
2β2`d`1 logpNq

˙

. (B.33)

For any θ, let pmpXi,θq “
ş

gpy,Xi,θqp̂Y |Xpy|Xiqdy be the conditional mean function

with the estimated conditional density function p̂Y |X , then

ENt pmpX,θq ´ m0pX,θqu2 “
1

N

N
ÿ

i“1

EX

„
ż

gpy,Xi,θqtp̂py|Xiq ´ pY |Xpy|Xiqudy

ȷ2

.

Since there exists a constant c ą 0 such that p0py|Xq ą c, we have

"
ż

|gpy,Xi,θq||p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|dy

*2

ď c´1

"
ż

|gpy,Xi,θq||p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|

b

pY |Xpy|Xiqdy

*2

ď c´1

ż

}gpy,Xi,θq}2|p̂Y |Xpy|Xiq ´ pY |Xi
py|Xiq|2dy

ż

pY |Xpy|Xiqdy

ď c´1 log2pNq

ż

|p̂Y |Xpy|Xiq ´ pY |Xi
py|Xq|2dy`

` c´1

ż

}gpy,Xi,θq}2Ip}gpy,Xi,θq}2 ą logpNqq|p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|2dy

“: I1i ` I2i, say. (B.34)

Note that as p̂Y |Xpy|Xiq and pY |Xpy|Xiq are uniformaly bounded by a constant M ą 0,

we have

|p̂Y |Xpy|Xiq ´ pY |Xpy|Xq|2 ď 4M2 ` Mp0py|Xiq ď p4M2m´1 ` Mqp0py|Xiq. (B.35)

Hence, I2i can be bounded by

I2i “c´1

ż

}gpy,Xi,θq}2Ip}gpy,Xi,θq}2 ą logpNqq|p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|2dy

13



À

ż

}gpy,Xi,θq}2Ip}gpy,Xi,θq}2 ą logpNqqp0py|Xiqdy

À

"ˆ
ż

}gpy,Xi,θq}4p0py|Xiqdy

˙ˆ
ż

Ip}gpy,Xi,θq}2 ą logpNqqp0py|Xiqdy

˙*1{2

ÀN´1,

which implies EN pI2iq À N´1. For the I1i term, it can be seen that

EN pI1iq À log2pNqENtpp̂Y |X ´ pY |Xq2u “ Op

ˆ

N
´

2β2
2β2`d`1 log3pNq

˙

.

Hence,

ENt pmpX,θq ´ m0pX,θqu2 “ EN pI1iq ` EN pI2iq “ Op

ˆ

N
´

2β2
2β2`d`1 log3pNq

˙

,

which together with } pmκpXi,θq ´ pmpXi,θq} “ Opp1{
?
κq complete the proof of Theorem

4.3.

C Proofs for Section 5

C.1 Proof for the consistency of pθ

Given the estimated pη, for any θ, we letΨipθ, pηq “ ΨpWi,θ,ηq, pΨpθ, pηq “ N´1
řN

i“1Ψipθ, pηq,

and pΩpθ,ηq “ N´1
řN

i“1Ψipθ, pηqΨipθ, pηqT. With the EL estimator pθ, we write Ψippηq “

Ψippθ, pηq, pΨppθ, pηq “ pΨppθ, pηq, and pΩpηq “ pΩppθ,ηq.

Lemma C.1. Under Conditions 1 and 2, if the estimation errors satisfy

EN pprq ` EN p pmθq “ opp1q and EN pprqEN p pmθq “ oppN´ 1
2 q, (C.1)

then we have

1
?
N

N
ÿ

i“1

ΨpWi,θ, pηq “
1

?
N

N
ÿ

i“1

ΨpWi,θ,η0q ` opp1q. (C.2)

Proof. Note that for each i “ 1, ¨ ¨ ¨ , N ,

ΨpWi,θ, pηq ´ ΨpWi,θ,η0q “ R1,ippηq ` R2,ippηq ` R3,ippηq,

where

R1,ippηq “

"

δi
p

´
1 ´ δi
1 ´ p

r0pXiq

*

t pmpXi,θqu ´ mpXi,θqu,

R2,ippηq “
1 ´ δi
1 ´ p

tprpXiq ´ r0pXiqut pmpXi,θqu ´ mpXi,θqu,

14



R3,ippηq “
1 ´ δi
1 ´ p

tprpXiq ´ r0pXiqutgpZi,θq ´ m0pXi,θqu.

Let Rjppηq “ N´ 1
2
řN

i“1Rj,ippηq for j “ 1, 2, 3. Then (C.2) can be shown if Rjppηq “ opp1q

for j “ 1, 2, 3. For the first term,

EtR2
1ppηq|tXiu

N
i“1u “ EN

«

"

δi
p

´
1 ´ δi
1 ´ p

r0pXiq

*2

t pmpXi,θqu ´ mpXi,θqu2

ff

À EN

“

t pmpXi,θqu ´ mpXi,θqu2
‰

“ EN p pmθq “ opp1q, (C.3)

where the first equality is due to

ENtR1,ippηqR1,i1ppηq|tXiu
N
i“1u “ 0,

for each i ‰ i1, by the independence of pXi, δiq and pX 1
i, δ

1
iq, and EN

!

δi
p ´

1´δi
1´p r0pXiq|Xi

)

“

0 for each 1 ď i ď N . Therefore, R1ppηq “ opp1q. For the second term, we have

R2ppηq “
?
NEN

"

1 ´ δi
1 ´ p

|prpXiq ´ r0pXiq| | pmpXi,θq ´ mpXi,θq|
*

À
?
NEN pprqEN p pmθ0q “ opp1q,

by the Cauchy-Schwarz inequality and (C.1). Finally, for the third term,

EtR2
3ppηq|tδi,Xiu

N
i“1u “ EN

„

1 ´ δi
p1 ´ pq2

tprpXiq ´ r0pXiqu2tgpZi,θ0q ´ m0pXi,θqu2|tδi,Xiu
N
i“1

ȷ

À En

“

tprpXiq ´ r0pXiqu2VarpgpZi,θq|XiquNi“1

‰

À Enpprq “ opp1q.

Therefore, we have R3ppηq “ opp1q. Since

1
?
N

N
ÿ

i“1

ΨpWi,θ, pηq ´
1

?
N

N
ÿ

i“1

ΨpWi,θ,ηq “ R1ppηq ` R2ppηq ` R3ppηq,

the proof of Lemma C.1 is finished.

Lemma C.2. Under Conditions 1 and 2, if the estimation errors satisfy

EN pprq ` EN p pmq “ opp1q and EN pprqEN p pmq “ oppN´ 1
2 q, (C.4)

then pθ “ θ0 ` opp1q.

Proof. The EL estimator pθ can be written as the solution to the saddle point problem

(Newey and Smith, 2004):

pθ “ argmin
θPΘ

sup
λPpΛN pθq

1

N

N
ÿ

i“1

ρpλTΨipθ, pηqq, (C.5)
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where ρpvq “ logp1 ` vq and pΛN pθq “ tλ : λTΨipθ, pηq P p´1,8qu. For any ξ P p1{α, 1{2q

where α is defined in Condition 2 (ii), let λ̃ “ N´ξ
pΨppθ, pηq{} pΨppθ, pηq}. By Lemma A1

of Newey and Smith (2004), maxiďN |λ̃T
pΨippηq| “ opp1q, and λ̃ P ΛN ppθq with probability

approaching 1. Thus, for any 9λ P pλ̃, 0q. Let ρk be the k-th derivative function of ρ.

Then since ρ2p0q “ ´1, with probability approaching 1 we have ρ2p 9λT
pΨippηqq ě ´Cpi “

1, ¨ ¨ ¨ , Nq for some positive constant C1. In addition, by the Cauchy-Schwarz inequality,

Condition 2 (iii), and the uniform weak law of large numbers it can easily be derived that

N´1
řN

i“1Ψipθ, pηqqb2 ď C2Ir for some positive constant C2 with probability approaching

1, meaning that the largest eigenvalue of N´1
řN

i“1Ψipθ, pηq is bounded from above with

probability approaching 1. Taking the Taylor expansion for ρpλ̃TΨippθ, pηqq at 0 gives

1

N

N
ÿ

i“1

ρpλ̃TΨippθ, pηqq “ λ̃ pΨppθ, pηq `
1

2
λ̃T

#

1

N

N
ÿ

i“1

ρ2p 9λT
pΨippθ, pηqqΨippθ, pηqqb2

+

λ̃

ě N´ξ} pΨppθ, pηq} ´
C1C2

2
}λ̃}2 ě N´ξ} pΨppθ, pηq} ´ C3N

´2ξ, (C.6)

with probability approaching 1, where C3 “ C1C2{2.

By the similar arguments as Lemma A2 of Newey and Smith (2004), it can be shown

that if for any θ̄ P Θ such that θ̄ “ θ0 ` opp1q and pΨpθ̄, pηq “ OppN´ 1
2 q, then

λ̄ “ argmax
λPpΛN pθ̄q

N´1 1

N

N
ÿ

i“1

ρpλTΨipθ̄, pηqq

exists with probability approaching 1, also it holds that

sup
λPpΛN pθ0q

1

N

N
ÿ

i“1

ρpλTΨipθ̄, pηqq “ OppN´1q, and λ̄ “ OppN´ 1
2 q. (C.7)

Setting θ̄ “ θ0. Then, according to Lemma C.1,

pΨpθ̄, pηq “ pΨpθ̄,η0q ` oppN´ 1
2 q “ OppN´ 1

2 q,

which shows that (C.7) holds with θ̄ “ θ0. Using the definition of the saddle point ppθ, λ̄q,

the inequality (C.6), and the claim (C.7) with , we have

N´ξ} pΨppθ, pηq} ´ C3N
´2ξ ď

1

N

N
ÿ

i“1

ρpλ̃TΨippθ, pηqq

ď
1

N

N
ÿ

i“1

ρppλTΨippθ, pηqq

ď sup
λPpΛN pθ0q

1

N

N
ÿ

i“1

ρpλTΨipθ0, pηqq “ OppN´1q,

(C.8)
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implying that } pΨppθ, pηq} “ OppN´1`ξq`OppN´ξq “ OppN´ξq, since ξ ă 1{2. Now, suppose

ϵN is an arbitrary sequence that converges to 0 and let λ̃ “ ϵN pΨppθ, pηq, which implies

λ̃ “ oppN´ξq. Then, similar to (C.8), we have

λ̃T} pΨppθ, pηq} ´ C3}λ̃}2 “ OppN´1q,

which implies ϵN p1 ´ C3ϵN q} pΨppθ, pηq}2 “ OppN´1q. Since 1 ´ C3ϵN “ Op1q, we have

ϵN} pΨppθ, pηq}2 “ OppN´1q for any sequence ϵN “ op1q. Then it follows that } pΨppθ, pηq} “

OppN´ 1
2 q. Similar to Lemma C.1, it implies that pΨppθ,η0q “ pΨppθ, pηq ` oppN´ 1

2 q “

OppN´ 1
2 q.

According to the uniform weak law of large numbers,

sup
θPΘ

} pΨpθ,η0q ´ Ψpθ,η0q} “ opp1q,

which together with pΨppθ,η0q “ opp1q implies Ψppθ,η0q “ opp1q. Since Ψpθ,η0q “ 0 if

and only if θ “ θ0 and Ψpθ,η0q is continuous with respect to θ, Ψppθ,η0q “ opp1q implies
pθ “ θ0 ` opp1q, which establishes the consistency of pθ.

C.2 Proof of Theorem 5.1

The saddle point ppθ, pλq to (C.5) satisfies Q1,N ppθ, pλq “ 0 and Q2,N ppθ, pλq “ 0, where

Q1,N ppθ, pλq “
1

N

N
ÿ

i“1

1

1 ` pλTΨippθ, pηq
Ψippθ, pηq, and

Q2,N ppθ, pλq “
1

N

N
ÿ

i“1

1

1 ` pλTΨippθ, pηq

˜

BΨippθ, pηq

Bθ

¸T

pλ.

By Taylor expansion of Q1,N ppθ, pλq “ 0 and Q2,N ppθ, pλq “ 0 around pθ0, 0q, we have

0 “ Q1,npθ0, 0q `
BQ1,N pθ0, 0q

Bθ
ppθ ´ θ0q `

BQ1,N pθ0, 0q

Bλ
pλ ` oppδN q, and

0 “ Q2,npθ0, 0q `
BQ2,N pθ0, 0q

Bθ
ppθ ´ θ0q `

BQ2,N pθ0, 0q

Bλ
pλ ` oppδN q,

where δN “ }pθ ´ θ0} ` }pλ}, leading to

˜

λ̂
pθ ´ θ0

¸

“ S´1
N

˜

´Q1,N pθ0, 0q ` oppδN q

´Q2,N pθ0, 0qoppδN q

¸

“ S´1
N

˜

´Q1,N pθ0, 0q ` oppδN q

oppδN q

¸

, (C.9)

where

SN “

˜

BQ1,N pθ0,0q

Bλ
BQ1,N pθ0,0q

Bθ
BQ2,N pθ0,0q

Bλ
BQ2,N pθ0,0q

Bθ

¸

,
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and the partial derivatives are

BQ1,N pθ0, 0q

Bθ
“

1

N

N
ÿ

i“1

BΨipθ0, pηq

Bθ
,

BQ1,N pθ0, 0q

Bλ
“ ´

1

N

N
ÿ

i“1

Ψipθ0, pηqb2,

BQ2,N pθ0, 0q

Bθ
“ 0,

BQ2,N pθ0, 0q

Bλ
“

1

N

N
ÿ

i“1

ˆ

BΨipθ0, pηq

Bθ

˙T

.

Using the dominated convergence theorem, we can show that } pm ´ m0} “ opp1q implies

}B pm{Bθ ´ Bm0{Bθ} “ opp1q. With the continuous mapping theorem and the law of large

numbers, we have

BQ1,N pθ0, 0q

Bθ
“ Γ ` opp1q,

BQ1,N pθ0, 0q

Bλ
“ ´Ω ` opp1q,

BQ2,N pθ0, 0q

Bθ
“ 0,

BQ2,N pθ0, 0q

Bλ
“ ΓT ` opp1q,

(C.10)

where

Γ “ E
"

BΨpW ,θ0,η0q

Bθ

*

and Ω “ E
␣

ΨpW ,θ0,η0qb2
(

.

From Lemma C.1, we have

Q1,N pθ0, 0q “
1

N

N
ÿ

i“1

ΨpWi,θ0,η0q ` oppN´ 1
2 q “ OppN´ 1

2 q, (C.11)

where the last equality is due to the CLT. Combining (C.9), (C.10), and (C.11), and using

the continuous mapping theorem, we have

˜

λ̂
pθ ´ θ0

¸

“

¨

˝

˜

´Ω Γ

ΓT 0

¸´1

` opp1q

˛

‚

˜

Q1,N pθ0, 0q ` oppδN q

oppδN q

¸

, (C.12)

assuming that the block matrix on the right-hand side is invertible. Since δN “ }pθ ´ θ0} `

}pλ}, we know that δN “ OP pN´ 1
2 q, which further implies that

?
Nppθ ´ θ0q “

␣

ΓTΩ´1Γ
(´1

ΓΩ´1
?
NQ1,N pθ0, 0q ` opp1q

d
Ñ N p0,

␣

ΓTΩ´1Γ
(´1

q,

which completes the proof of Theorem 5.1.

C.3 Proof of Theorem 5.2

Since for every θ P Θ, the optimal empirical weight pi is given by

pi “
1

N

1

1 ` λpθqTΨipθ, pηq
,
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where λpθq satisfies Q1,N pθ, λpθqq “ 0, the log EL statistics with a given θ can be written

as

ℓN pθq “ logt1 ` λpθqTΨipθ, pηqu.

With θ “ θ0, solving Q1,N pθ0, λq “ 0 gives

λpθ0q “ Ω´1Q1,N pθ0, 0q ` oppN´ 1
2 q.

Taking the expansion of ℓN pθ0q leads to

ℓN pθ0q “ ´
N

2
QT

1,N pθ0, 0qΩ´1Q1,N pθ0, 0q ` opp1q. (C.13)

Using the characteristic of pλ given in (C.12), and expanding ℓN ppθq gives

ℓN pθ0q “ ´
N

2
QT

1,N pθ0, 0qAQ1,N pθ0, 0q ` opp1q, (C.14)

where

A “ ´Ω´1tI ` ΓpΓTΩ´1Γq´1ΓTΩ´1u.

Therefore, RN pθ0q is equivalent to

RN pθ0q “ NQT
1,N pθ0, 0qpA ´ Ω´1qQ1,N pθ0, 0q ` opp1q

“ NQT
1,N pθ0, 0qΩ´1ΓpΓTΩ´1Γq´1ΓTΩ´1Q1,N pθ0, 0q ` opp1q.

Note that p´Ωq´ 1
2

?
NQ1,N pθ0, 0q weakly converges to a standard normal distribution, and

p´Ωq´ 1
2ΓpΓTΩ´1Γq´1ΓTp´Ωq´ 1

2

is symmetric and idempotent with the trace equal to r. Hence, RN pθ0q
d

Ñ χ2
r , which

completes the proof of Theorem 5.2.

C.4 Proof of Theorem 5.3

We present the proof for the density ratio estimation, since the conditional density estima-

tion can be proved similarly. Throughout this proof, we take the compact covariate domain

X “ r0, 1sd without loss of generality. The main idea for the proof, which is similar to

that of Theorem 6.1 of Jiao et al. (2023), is to project the data to a low-dimensional space,

where the DNN can be used to approximate the low-dimensional function.

Let dδ “ OpdM logpd{δq{δ2q be an integer such that dM ď dδ ă d for any δ P p0, 1q.

According to Theorem 3.1 of Baraniuk and Wakin (2009), there exists a matrix A P Rdδˆd,

which maps a manifold in Rd into a low-dimensional space Rdδ and approximately preserves

the distance. To be more specific, such the matrix A satisfies AAT “ pd{dδqIdδ , and

p1 ´ δq}x1 ´ x2}2 ď }Ax1 ´ Ax2}2 ď p1 ` δq}x1 ´ x2}2
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for every x1,x2 P Mρ. Using A as a projection operator, we have

ApMρq Ă Apr0, 1sdq Ă

«

´

d

d

dδ
,

d

d

dδ

ffdδ

.

We now show that for every a P ApMρq, there exists a unique x P Mρ such that

Ax “ a. Suppose that x1 P Mρ is another point with Ax1 “ a. Then p1 ´ δq}x ´ x1}2 ď

}Ax´Ax1}2 ď p1` δq}x´x1}2 implies that }x´x1}2 “ 0. Therefore, for any a P ApMρq,

we can define xpaq “ SAptx P Mρ,Ax “ auq, where SAp¨q is a set function that maps a set

to a unique element of this set. It can be shown that SA : ApMρq Ñ Mρ is a differentiable

function, because for every a1,a2 P ApMρq,

1

1 ` δ
}a1 ´ a2} ď }xpa1q ´ xpa2q} ď

1

1 ´ δ
}a1 ´ a2},

and the norm of the derivative of SA is in the range rp1 ` δq´1, p1 ´ δq´1s.

Given a function f0 : r0, 1sd Ñ R, with the operator xp¨q, we can define its low-

dimensional representation f̃0 : ApMρq Ñ R by

f̃0paq “ f0pxpaqq, for every a P ApMρq Ă Rdδ .

Since r0 P Hβ1pr0, 1sdB1q, we have f̃0 P HβpApMρq, B1{p1 ´ δqβ1q. Since Mρ is a compact

space and A is a linear operator, by Whitney extension theorem (Fefferman, 2006), there

exists F̃0 P Hβ1pEδ, B1{p1 ´ δqβ1q with Eδ “ r´
a

d{dδ,
a

d{dδsdδ , such that F̃0paq “ f̃0paq

for every a P ApMρq. According to Theorem 3.3 of Jiao et al. (2023), for any N,M P N`,

there exists a function f̃ : Eδ : R belongs to the DNN function class with the ReLU

activation function, whose width W “ 38ps ` 1q2ds`1
δ Jrlog2p8Jqs and depth D “ 21ps `

1q2M rlog2p8Mqs, where s “ tβ1u such that

sup
aPEδzΩpEδq

|f̃paq ´ F̃0paq| ď 36
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ , (C.15)

where ΩpEδq is a subset of Eδ whose Lebesgue measure is arbitrarily small, as well as

Ω :“ tx P Mρ : Ax P ΩpEδqu does.

Let f̃˚ “ f̃ ˝ A, meaning that f̃˚pxq “ f̃pAxq for every x P r0, 1sd. Then, f̃˚ is also a

DNN whose width and depth are the same as f̃ . For every x P MρzΩ and a “ Ax, by the

definition of Mρ, there exists a x̃ P Mρ such that }x̃ ´ x} ď ρ. Then,

|f̃˚pxq ´ r0pxq| ď |f̃pAxq ´ F̃0pAxq| ` |F̃0pAxq ´ F̃0pAx̃q| ` |F̃0pAx̃q ´ r0pxq|

ď 36
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ `

B1

1 ´ δ
}Ax ´ Ax̃} ` |r0px̃q ´ r0pxq|

ď 36
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ `

ρB1

1 ´ δ

a

d{dδ ` ρB1
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ď p36 ` Cρq
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ ,

where the second inequality is by (C.15), the smoothness of F̃0, and the definition of F̃0. The

third inequality is because }A} “
a

d{dδ and the smoothness of r0. The positive constant

Cρ is taken such that ρ ď Cρp1´δq1´βps`1q2
?
dd

3s{2
δ pJMq´2β1{dδp

a

d{dδ `1´δq´1. Since

PX is absolutely continuous with respect to the Lebesgue measure, we have

}f̃˚ ´ r0}2L2pP q ď p36 ` Cρq2
B2

1

p1 ´ δq2β1
ps ` 1q4dd3sδ pJMq´4β1{dδ . (C.16)

As shown in the proof of Theorem 4.1,

Et}pr ´ r0}2nu ď C

ˆ

PdimpFN q logpNq

N
` ϵ2N

˙

,

for some positive constant C, where ϵ2N “ inffPFN
}f̃˚ ´ r0}2L2pP q

. According to Bartlett

et al. (2019), for the DNN class FN with width W and depth D, its pseodu-dimension is

bounded by

PdimpFN q ď C1W
2D2 logpW 2Dq,

where C1 is a positive constant. The approximation error ϵ2N ď }f̃˚ ´ r0}2L2pP q
is bounded

by the right-hand side of (C.16). Therefore,

Et}pr ´ r0}2nu ď C2

ˆ

W 2D2 logpW 2Dq logpNq

N
`

B2
1

p1 ´ δq2β1
ps ` 1q4dd3sδ pJMq´4β1{dδ

˙

.

Choosing J “ 1 and M “ NDδ with Dδ “ dδ{p2pdδ ` 2β1qq leads to

Et}pr ´ r0}2nu ď C3dd
3tβ1u

δ N
´

2β1
2β1`dδ ,

where the positive constant C3 does not depend on N or d, which completes the proof.

C.5 Proof of Theorem 5.4

With our Lemma C.1 and Theorem 5.3, the proof is obtained by assigning αpkq “ 0 and

M “ 1 in Theorem 2 of Chang et al. (2015), and hence is omitted here.

D Proofs for Section 5

D.1 Proof of Theorem 6.1

Lemma D.1. Under Conditions 1–3, 4 (iii), 9, and 10,

?
NE

"

1 ´ δ

1 ´ p
prpXqmpXq

*

“
1

?
N

N
ÿ

i“1

"

δi
p
mpXiq ´

1 ´ δi
1 ´ p

r0pXiqmpXiq

*

` opp1q, (D.1)

where the expectation is taken with respect to X.
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Recall that the criterion function for the estimation of r is defined as

pLN prq “
1

N

N
ÿ

i“1

ℓpδi,Xi; rq,

where

ℓpδ,X; rq “
1 ´ δ

1 ´ p
ℓ1pX; rq ´

δ

p
ℓ2pX; rq.

The directional derivative of ℓpδ,X; rq with respect to r in the direction u P L2pP q is given

by

d

du
ℓpδ,X; rqrus :“ lim

tÑ0

ℓpδ,X; r ` tuq ´ ℓpδ,X; rq

t

“

"

1 ´ δ

1 ´ p

B

Br
ℓ1pX; rq ´

δ

p

B

Br
ℓ2pX; rq

*

upXq

“: ℓp1qpδ,X; rqupXq, say. (D.2)

According to Condition 9. (ii), we have

ℓp1qpδ,X; rq “
1 ´ δ

1 ´ p

B

Br
ℓ2pX; rqrpXq ´

δ

p

B

Br
ℓ2pX; rq.

The first-order approximation error for ℓpδ,X; r0q is denoted as

epδ,X, r ´ r0q “ ℓpδ,X; rq ´ ℓpδ,X; r0q ´
d

du
ℓpδ,X; r0qrr ´ r0s.

With the above notations, for any r P FN , it holds that

pLN prq “pLN pr0q ` tpLN prq ´ pLN pr0qu

“pLN pr0q `
1

N

N
ÿ

i“1

tℓpδi,Xi; rq ´ ℓpδi,Xi; r0qu

“pLN pr0q `
1

N

N
ÿ

i“1

"

d

dr
ℓpδi,Xi; r0qrr ´ r0s ` epδi,Xi; r ´ r0q

*

“pLN pr0q `
1

?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrr ´ r0s

˙

`
1

N

N
ÿ

i“1

epδi,Xi; r ´ r0q, (D.3)

where the last equality is because

E
"

d

dr
ℓpδi,Xi; r0qrr ´ r0s

*

“ 0. (D.4)

We will employ the Cramer-Wald device to establish (D.1). For any v P Rp with }v} “ 1,

we define m̃v,ℓ2pxq “ mpxqTv ¨ pBℓ2px, rq{Brq´1. For any r P FN , let

r̄pr, ϵN q “ p1 ´ ϵN qr ` ϵN pr0 ` m̃v,ℓ2q
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be a local alternative value around r and

ΠFn r̄pr, ϵN q “ p1 ´ ϵN qr ` ϵN pr˚ ` m̃˚q,

where r˚ “ argminrPFN
}r´ r0}L2pF q and m̃˚ “ argminmPFN

}m´ m̃v,ℓ2}L2pF q. In the light

of Condition 10, we have ΠFn r̄pr, ϵN q P FN and

sup
rPFN

}ΠFN
r̄v,ℓ2pr, ϵN q ´ r̄v,ℓ2pr, ϵN q}L2pF q “ opϵN ¨ N´ 1

4 q. (D.5)

By substituting r with pr and ΠFn r̄ppr, ϵN q, respectively, we obtain

pLN pprq “ pLN pr0q `
1

?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r0s

˙

`
1

N

N
ÿ

i“1

epδi,Xi; pr ´ r0q (D.6)

and

pLN pΠFN
r̄v,ℓ2ppr, ϵN qq “pLN pr0q `

1
?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrΠFN

r̄v,ℓ2ppr, ϵN q ´ r0s

˙

`
1

N

N
ÿ

i“1

epδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q. (D.7)

Subtracting (D.6) from (D.7) gives

pLN pprq “pLN pΠFN
r̄v,ℓ2ppr, ϵN qq `

1
?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

`
1

N

N
ÿ

i“1

tepδi,Xi; pr ´ r0q ´ epδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0qu . (D.8)

We will prove later in Subsection D.2 that

1

N

N
ÿ

i“1

tepδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q ´ epδi,Xi; pr ´ r0qu

“ ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

. (D.9)

By the definition of pr, we have

pLN pprq ´ pLN pΠFN
r̄v,ℓ2ppr, ϵN qq ď Opϵ2N q,

which together with (D.8) and (D.9) yield

1
?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

´ ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

ď Opϵ2N q. (D.10)
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For the term GN

`

d
dr ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs
˘

, we have

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

“GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r̄v,ℓ2ppr, ϵN qs

˙

` GN

ˆ

d

dr
ℓpδi,Xi; r0qrr̄v,ℓ2ppr, ϵN q ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

“GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r̄v,ℓ2ppr, ϵN qs

˙

` oppϵN q,

where the last equality is due to (D.5) and the Chebyshev inequality. By the definition of

r̄v,ℓ2ppr, ϵN q, we have

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r̄v,ℓ2ppr, ϵN qs

˙

“ϵNGN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r0s

˙

´ ϵNGN

ˆ

d

dr
ℓpδi,Xi; r0qrm̃v,ℓs

˙

. (D.11)

We now show that GN

`

d
dr ℓpδi,Xi; r0qrpr ´ r0s

˘

“ opp1q. By (D.2),

d

dr
ℓpδi,Xi; r0qrpr ´ r0s “ ℓp1qpδi,Xi; r0qtprpXiq ´ r0pXiqu.

Let

F̃N “

!

ℓp1qpδ,x; r0qtrpxq ´ r0pxqu : r P FN , }r ´ r0}L2pF q ď δN

)

,

then it is evident that

logNr spϵ, F̃N , L2pF qq À logNr spϵ,FN , L2pF qq

for any ϵ ą 0. Therefore, the bracketing number of F̃N satisfies

Jr spδN , F̃N , L2pF qq “

ż δN

0

b

1 ` logNr spϵ, F̃N , L2pF qqdϵ

À

ż δN

0

b

1 ` logNr spϵ,FN , L2pF qqdϵ

“ Jr spδN ,FN , L2pF qq “ op1q

by Condition 10 (iii). Also, for every f P F̃N , it holds that }f}8 “ Op1q and }f}L2pF q “

OpδN q. By applying Lemma 3.4.2 of van der Vaart and Wellner (1996), we have

E}GN}F̃N
À Jr spδN , F̃N , L2pF qq

˜

1 `
Jr spδN , F̃N , L2pF qq

δ2N
?
N

Op1q

¸

“ op1q,

which, by the Markov inequality, implies that

sup
rPFN

GN

´

ℓp1qpδ,x; r0qtrpxq ´ r0pxqu

¯

“ opp1q, (D.12)
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meaning that

ϵNGN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r0s

˙

“ oppϵN q.

In addition, plugging m̃v,ℓpXiq “ mvpXiq ¨ t B
Br ℓ2pXi, r0qu´1 into the directional deriva-

tive specified in (D.2) gives

´GN

ˆ

d

dr
ℓpδi,Xi; r0qrm̃v,ℓs

˙

“
1

?
N

N
ÿ

i“1

"

δi
p
mvpXiq ´

1 ´ δi
1 ´ p

r0pXiqmvpXiq

*

.

Combining the above results gives

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

“
ϵN

?
N

N
ÿ

i“1

"

δi
p
mvpXiq ´

1 ´ δi
1 ´ p

r0pXiqmvpXiq

*

` oppϵN q.

Therefore, multiplying the both sides of (D.10) by
?
N{ϵN leads to

1
?
N

N
ÿ

i“1

"

δi
p
mvpXiq ´

1 ´ δi
1 ´ p

r0pXiqmvpXiq

*

` oppϵN q

´
?
Np1 ´ ϵN qE

ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

“ opp1q ` Op

ˆ

ϵN
?
N

˙

“ opp1q,

which completes the proof of Lemma D.1.

D.2 Proof of (D.9)

First, for any candidate r we can decompose epδ,X, r ´ r0q as

epδ,X, r ´ r0q

“ℓpδ,X; rq ´ ℓpδ,X; r0q ´
d

du
ℓpδ,X; r0qrr ´ r0s

“
1

2

"

1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q

*

trpXq ´ r0pXqu2 ` Rpδ,X, rq, (D.13)

where the remainder term Rpδ,X, rq is

Rpδ,X, rq “
1

2

ż rpXq

r0pXq

"

1 ´ δ

1 ´ p

B3

Br3
ℓ1pX; tq ´

δ

p

B3

Br3
ℓ2pX; tq

*

trpXq ´ tu2dt,

and the last equality of (D.13) is due to the following Taylor’s theorem

fpbq “ fpaq ` f 1paqpb ´ aq `
f2paq

2
pb ´ aq2 `

ż b

a

f3ptq

2
pb ´ tq2dt.
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Let

ℓp2qpδ,Xq :“
1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q.

Then, according to Condition 9.(i), we have

B

Br
ℓ1pX; r0q “ r0pXq

B

Br
ℓ2pX; r0q,

B2

Br2
ℓ1pX; r0q “ r0pXq

B2

Br2
ℓ2pX; r0q `

B

Br
ℓ2pX; r0q,

which implies that

ℓp2qpδ,Xq “
1 ´ δ

1 ´ p

"

r0pXq
B2

Br2
ℓ2pX; r0q `

B

Br
ℓ2pX; r0q

*

´
δ

p

B2

Br2
ℓ2pX; r0q. (D.14)

The last term in (D.8) can be written as

1

N

N
ÿ

i“1

tepδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q ´ epδi,Xi; pr ´ r0qu

“
1

2N

N
ÿ

i“1

"

1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q

*

tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2

´
1

2N

N
ÿ

i“1

"

1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q

*

tprpXiq ´ r0pXiqu2

`
1

N

N
ÿ

i“1

tRpδi,Xi,ΠFN
r̄v,ℓ2ppr, ϵN qq ´ Rpδi,Xi, prqu

“:E1,N ` E2,N ` E3,N , say.

For the term tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2, we have

tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2

“tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiq ` r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2

“tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiq ` p1 ´ ϵN qpprpXiq ´ r0pXiqq ` ϵNm̃v,ℓ2pXiqu2

“tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqu2 ` p1 ´ ϵN q2tprpXiq ´ r0pXiqu2 ` ϵ2Nm̃2

v,ℓ2pXiq

` 2p1 ´ ϵN qtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqutprpXiq ´ r0pXiqu

` 2ϵNtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqum̃v,ℓ2pXiq

` 2p1 ´ ϵN qϵNtprpXiq ´ r0pXiqum̃v,ℓ2pXiq. (D.15)

Using (D.15), we can decompose E1,N ` E2,N as

E1,N ` E2,N

“
1

2N

N
ÿ

i“1

ℓp2qpδi,XiqrtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2 ´ tprpXiq ´ r0pXiqu2s
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“
1

2N

N
ÿ

i“1

ℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqu2

`
p1 ´ ϵN q2 ´ 1

2N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqu2 `
ϵ2N
2N

ℓp2qpδi,Xiqm̃
2
v,ℓ2pXiq

`
1 ´ ϵN
N

N
ÿ

i“1

ℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqutprpXiq ´ r0pXiqu

`
ϵN
N

N
ÿ

i“1

ℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqum̃v,ℓ2pXiq

`
ϵN p1 ´ ϵN q

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

“
1

2
Erℓp2qpδi,XiqtΠFN

r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqu2st1 ` opp1qu

`
ϵ2N ´ 2ϵN

2
Erℓp2qpδi,XiqtprpXiq ´ r0pXiqu2st1 ` opp1qu `

ϵ2N
2
Etℓp2qpδi,Xiqm̃

2
v,ℓ2pXiqut1 ` opp1qu

` p1 ´ ϵN qErℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqutprpXiq ´ r0pXiqust1 ` opp1qu

` ϵNEtℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqum̃v,ℓ2pXiqu

`
ϵN p1 ´ ϵN q

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

ďOppϵ2Nδ2N q ` OppϵNδ2N q ` Oppϵ2N q ` OppϵNδ2N q ` Oppϵ2NδN q

`
ϵN p1 ´ ϵN q

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq, (D.16)

where the expectations are taken with respect to pδi,Xiq, and the last equality is by the

uniform boundness of ℓp2qpδ,Xq, the approximation error in (D.5), and the bounded moment

of }m̃v,ℓ2}2. For the last term in (D.16), we note that

1

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

“
1

?
N

GN

´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

` E
´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

, (D.17)

where the expectation is taken with respect to pδi,Xiq. By the stochastic equicontinuity

which can be derived with the similar arguments as for (D.12), we can obtain

GN

´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

“ opp1q. (D.18)

In the light of (D.14) and m̃v,ℓ2pXiq “ mvpXiq ¨ t B
Br ℓ2pXi, r0qu´1, the expectation term can
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be written as

E
´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

“E
ˆ

1 ´ δ

1 ´ p

"

r0pXq
B2

Br2
ℓ2pX; r0q `

B

Br
ℓ2pX; r0q

*

tprpXiq ´ r0pXiqumvpXiq ¨ t
B

Br
ℓ2pXi, r0qu´1

˙

´ E
"

δ

p

B2

Br2
ℓ2pX; r0qtprpXiq ´ r0pXiqumvpXiq ¨ t

B

Br
ℓ2pXi, r0qu´1

*

“E
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

, (D.19)

where the last equality is due to Etp1 ´ δqr0pXqfpXqu “ EtδfpXqu for any fpXq. Com-

bining (D.16), (D.17), (D.18), and (D.19), and taking the convergence rate δN “ oppN´ 1
4 q,

we obtain

E1,N ` E2,N “ ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

. (D.20)

For the term E3,N , we let

ℓp3qpδ,X; tq “
1 ´ δ

1 ´ p

B3

Br3
ℓ1pX; tq ´

δ

p

B3

Br3
ℓ2pX; tq.

Due to B
Br ℓ1pX, tq “ t ¨ B

Br ℓ2pX, tq imposed in Condition 9, we have

ℓp3qpδ,X; tq “
1 ´ δ

1 ´ p

"

t ¨
B3

Br3
ℓ2pX; tq `

B2

Br2
ℓ2pX; tq `

B

Br
ℓ2pX; tq

*

´
δ

p

B3

Br3
ℓ2pX; tq,

(D.21)

which is uniformly bounded by some positive constant cℓ according to Condition 9.(ii).

then E3,N can be decomposed as

E3,N “
1

N

N
ÿ

i“1

tRpδi,Xi,ΠFN
r̄v,ℓ2ppr, ϵN qq ´ Rpδi,Xi, prqu

“
1

2N

N
ÿ

i“1

ż ΠFN
r̄v,ℓ2 ppr,ϵN q

r0pXiq

ℓp3qpδi,Xi; tqtΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

´
1

2N

N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqtprpXiq ´ tu2dt

“
1

2N

N
ÿ

i“1

ż ΠFN
r̄v,ℓ2 ppr,ϵN q

prpXiq

ℓp3qpδi,Xi; tqtΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

´
1

2N

N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqrtprpXiq ´ tu2 ´ tΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2sdt

“:D1,N ` D2,N , say.
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For the term D1,N , we have

2|D1,N | “
1

N

∣∣∣∣∣ N
ÿ

i“1

ż ΠFN
r̄v,ℓ2 ppr,ϵN q

prpXiq

ℓp3qpδi,Xi; tqtΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

∣∣∣∣∣
ď

cℓ
N

N
ÿ

i“1

∣∣∣∣∣
ż ΠFN

r̄v,ℓ2 ppr,ϵN q

prpXiq

tΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

∣∣∣∣∣
“

cℓ
N

N
ÿ

i“1

p1 ´ siq
∣∣tΠFN

r̄v,ℓ2ppr, ϵN q ´ prpXiqu3
∣∣ pfor some si P p0, 1qq

ď
cℓ
N

N
ÿ

i“1

|ΠFN
r̄v,ℓ2ppr, ϵN q ´ prpXiq|3

ď
2cℓ
N

N
ÿ

i“1

t|ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|3 ` |r̄v,ℓ2ppr, ϵN q ´ prpXiq|3u,

where the first inequality is from the uniform boundness of ℓp3qpδi,Xi; tq, the second equality

is by applying the mean value theorem, and the last inequality is from the inequality

pa ` bq3 ď 2pa3 ` b3q for any positive a and b. From (D.5) it can be easily derived that

max1ďiďN |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| “ opp1q. For the term |r̄v,ℓ2ppr, ϵN q ´ prpXiq|, we

have

1

N

N
ÿ

i“1

|r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ ϵN
1

N

N
ÿ

i“1

tprpXiq ´ r0pXiq ´ m̃v,ℓ2pXiqu “ OppϵN q, (D.22)

1

N

N
ÿ

i“1

|r̄v,ℓ2ppr, ϵN q ´ prpXiq|2 “ ϵ2N
1

N

N
ÿ

i“1

tprpXiq ´ r0pXiq ´ m̃v,ℓ2pXiqu2 “ Oppϵ2N q, (D.23)

Using Lemma 2 of Owen (1990), it holds that max1ďiďN |m̃v,ℓ2pXiq| “ opp
?
Nq, which

together with the uniform boundness of pr and r0 and ϵN “ oppN´ 1
2 q imply that

max
1ďiďN

|r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ ϵN max
1ďiďN

|prpXiq ´ r0pXiq ´ m̃v,ℓ2pXiq| “ opp1q. (D.24)

Therefore, |D1,N | can be bounded by

|D1,N | ď oppϵ2Nδ2N q ` oppϵ2N q “ op

ˆ

ϵN
?
N

˙

, (D.25)

where the equality is due to ϵN “ opN´ 1
2 q and δN “ opN´ 1

4 q.

For the term D2,N , we have

2|D2,N | “
1

N

∣∣∣∣∣ N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqrtprpXiq ´ tu2 ´ tΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2sdt

∣∣∣∣∣
“

1

N

∣∣∣∣∣ N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqrtprpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN qutprpXiq ` ΠFN

r̄v,ℓ2ppr, ϵN q ´ 2tusdt

∣∣∣∣∣
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ď
cℓ
N

N
ÿ

i“1

ż

prpXiq

r0pXiq

|prpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN q| |prpXiq ` ΠFN

r̄v,ℓ2ppr, ϵN q ´ 2t| dt

ď
cℓ
N

N
ÿ

i“1

t|prpXiq ´ r0pXiq| |prpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN q|

¨ |prpXiq ` ΠFN
r̄v,ℓ2ppr, ϵN q ´ 2tsiprpXiq ` p1 ´ siqr0pXiqu|u pfor some si P p0, 1qq

“
cℓ
N

N
ÿ

i“1

t|prpXiq ´ r0pXiq| |prpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN q|

¨ |ΠFN
r̄v,ℓ2ppr, ϵN q ´ prpXiq ` 2p1 ´ siqtprpXiq ´ r0pXiqu|u

ď
cℓ
N

N
ÿ

i“1

t|prpXiq ´ r0pXiq| p|ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| ` |r̄v,ℓ2ppr, ϵN q ´ prpXiq|q

¨p|ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| ` |r̄v,ℓ2ppr, ϵN q ´ prpXiq| ` 2 |prpXiq ´ r0pXiq|qu

“
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|2

`
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| |r̄v,ℓ2ppr, ϵN q ´ prpXiq|

`
2cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|

`
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |r̄v,ℓ2ppr, ϵN q ´ prpXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|

`
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |r̄v,ℓ2ppr, ϵN q ´ prpXiq|2

`
2cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |r̄v,ℓ2ppr, ϵN q ´ prpXiq| , (D.26)

where the first inequality is from the uniform boundness of ℓp3qpδi,Xi; tq and the second

inequality is by applying the mean value theorem. By the uniform boundness of pr and r0,

the approximation error in (D.5), (D.23), }pr ´ r0}L2pP q “ OppδN q, and the Cauchy-Schwarz

inequality, we can obtain

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|2 “ Oppϵ2Nδ2N q,

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| |r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ Oppϵ2NδN q,

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| “ OppϵNδ2N q.
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By the uniform boundness of pr and r0, }pr ´ r0}L2pP q “ OppδN q, and (D.24), we have

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |r̄v,ℓ2ppr, ϵN q ´ prpXiq|2 “ Oppϵ2N q

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ OppϵNδ2N q,

where the second result is obtained from the Cauchy-Schwarz inequality. Collecting the

above results and plugging them into (D.26), we can bound |D2,N | by

|D2,N | ď Oppϵ2Nδ2N q ` OppϵNδ2N q ` OppϵNδ2N q ` Oppϵ2N q

“ op

ˆ

ϵN
?
N

˙

, (D.27)

where the equality is due to ϵN “ opN´ 1
2 q and δN “ oppN´ 1

4 q.

To sum up, we have shown that

E3,N “ D1,N ` D2,N “ op

ˆ

ϵN
?
N

˙

,

which together with the result for E1,N ` E2,N in (D.20) yield

1

N

N
ÿ

i“1

tepδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q ´ epδi,Xi; pr ´ r0qu

“ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

,

which is the desired result.
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E Additional simulation results

In this part, we report additional results of the numerical simulations, including the infer-

ence for the mean of Y of the target population with the dimension of the covariate d “ 5

in Table 1, and the inference for the mean and median Y of the target population with

d “ 10 in Table 2 and 3, respectively.

Table 1. Empirical estimation and inference results for θ “ EQpY q of the target population
with d “ 5 based on 300 simulation replications. The five methods considered are the density
ratio weighting (DRW), the multiple imputations (MI), the proposed method with both the
density ratio weighting and the multiple imputations using the estimated nuisance functions
(DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the localized
double machine learning (LDML), and the covariance balancing (CB). The nominal coverage
probability of the confidence interval is 0.95.

Methods Bias Std.dev MSE Coverage Length of CI

n “ 1000

DRW -0.0168 0.1322 0.0175 0.9048 0.4087

MI 0.0203 0.1471 0.0217 0.8736 0.3716

DRW-MI-E -0.0135 0.1304 0.0171 0.9265 0.3824

DRW-MI-T -0.0125 0.1271 0.0163 0.9374 0.3791

LDML -0.0117 0.1426 0.0204 0.8592 0.3617

CB 0.0370 0.1683 0.0297 0.7332 0.4204

n “ 2000

DRW -0.0149 0.1006 0.0103 0.9102 0.2817

MI -0.0182 0.1120 0.0129 0.8914 0.2546

DRW-MI-E -0.0118 0.0937 0.0089 0.9350 0.2972

DRW-MI-T -0.0121 0.0922 0.0086 0.9550 0.2935

LDML 0.0130 0.1105 0.0124 0.9008 0.2780

CB 0.0302 0.1319 0.0183 0.7298 0.3064

n “ 5000

DRW 0.0105 0.0772 0.0061 0.9163 0.1708

MI -0.0127 0.0869 0.0078 0.9081 0.1665

DRW-MI-E 0.0084 0.0673 0.0046 0.9437 0.1812

DRW-MI-T -0.0081 0.0660 0.0043 0.9481 0.1845

LDML -0.0119 0.0882 0.0078 0.9083 0.1713

CB 0.0267 0.0941 0.0096 0.7510 0.1964
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Table 2. Empirical estimation and inference results for θ “ EQpY q of the target population
with d “ 20 based on 300 simulation replications. The five methods considered are the
density ratio weighting (DRW), the multiple imputations (MI), the proposed method with
both the density ratio weighting and the multiple imputations using the estimated nuisance
functions (DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the
localized double machine learning (LDML), and the covariance balancing (CB). The nominal
coverage probability of the confidence interval is 0.95.

Methods Bias Std.dev MSE Coverage Length of CI

n “ 1000

DRW 0.0815 0.3048 0.0995 0.7296 1.1592

MI -0.0902 0.3407 0.1242 0.7381 1.2157

DRW-MI-E 0.0521 0.2485 0.0645 0.8168 0.9052

DRW-MI-T 0.0347 0.2019 0.0419 0.8477 0.8895

LDML 0.0609 0.3601 0.1334 0.7201 1.3162

CB -0.1308 0.2724 0.0864 0.5942 0.8125

n “ 2000

DRW 0.0701 0.2382 0.0616 0.7640 0.8619

MI -0.0736 0.2619 0.0631 0.7774 0.9015

DRW-MI-E -0.0452 0.1829 0.0355 0.8851 0.7824

DRW-MI-T -0.0301 0.1681 0.0291 0.9174 0.7637

LDML 0.0492 0.2128 0.0477 0.7831 0.8459

CB -0.0945 0.2209 0.0559 0.5781 0.7037

n “ 5000

DRW 0.0539 0.1839 0.0367 0.8152 0.6729

MI 0.0569 0.2007 0.0435 0.8347 0.7138

DRW-MI-E -0.0335 0.1362 0.0196 0.9214 0.6042

DRW-MI-T 0.0304 0.1120 0.0135 0.9436 0.5814

LDML 0.0369 0.1783 0.0331 0.8152 0.7221

CB -0.0901 0.1821 0.0395 0.6515 0.5981
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Table 3. Empirical estimation and inference results for θ “ Q´1
Y p1{2q of the target popula-

tion with d “ 20 based on 300 simulation replications. The five methods considered are the
density ratio weighting (DRW), the multiple imputations (MI), the proposed method with
both the density ratio weighting and the multiple imputations using the estimated nuisance
functions (DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the
localized double machine learning (LDML), and the covariance balancing (CB). The nominal
coverage probability of the confidence interval is 0.95.

Methods Bias Std.dev MSE Coverage Length of CI

n “ 1000

DRW -0.0943 0.3420 0.1258 0.7169 1.2011

MI -0.0962 0.3541 0.1346 0.7215 1.2142

DRW-MI-E 0.0731 0.2685 0.0774 0.8280 1.0204

DRW-MI-T 0.0527 0.2301 0.0557 0.8505 0.9969

LDML -0.0693 0.3318 0.1148 0.7119 1.2650

CB -0.1436 0.2817 0.1001 0.5523 0.8856

n “ 2000

DRW 0.0815 0.2740 0.0817 0.7593 0.8619

MI -0.0856 0.2802 0.0858 0.7324 0.8242

DRW-MI-E -0.0528 0.2129 0.0481 0.8613 0.7907

DRW-MI-T 0.0493 0.1891 0.0381 0.9038 0.7741

LDML 0.0566 0.2547 0.0681 0.7918 0.8109

CB -0.1231 0.2037 0.0566 0.5390 0.7074

n “ 5000

DRW 0.0652 0.1971 0.0431 0.8098 0.6872

MI -0.0690 0.2085 0.0482 0.8209 0.7524

DRW-MI-E -0.0341 0.1381 0.0203 0.9209 0.6507

DRW-MI-T -0.0318 0.1152 0.0143 0.9367 0.5901

LDML 0.0392 0.1801 0.0339 0.8247 0.7349

CB -0.1056 0.1618 0.0373 0.5607 0.5890
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F Additional case study results

Figure 1 in the SM illustrates the distinctions between the distributions of some key vari-

ables of the target and the source samples, which reveals that directly using the source

samples to make inferences about the O3 of the target population would introduce biases.

Figure 1. Density plots for the O3 and covariate variables of the source and the target
samples.
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