Supplemental Material for “Iransfer Learning with General

Estimating Equations”

Notations Throughout the supplementary material, we use ¢ and C with different sub-
scripts to denote generic finite positive constants and may be different in different uses. The
empirical measure is denoted as E,,(-). We use 1(.A) as the indicator function of an event A.
For any vector v = (vq,- -+ ,v4)7, let v® = vo™ and |vl|, denote its LP norm. For a func-
tion f: X — R, its supreme is denoted by | f|lc = supgex f(x), and its Ly-norm under a
distribution F’ that generates a random variable X is denoted by | |z, r) = (Ep[f(X)[? )i/p
for any p > 1. For two sequences of positive numbers {a,} and {b,}, we write a,, < b, if
there exists a positive constant C such that a,, < Cb,. Let Pdim(F') be the the Pseudo
dimension (Pollard, 1990) of the function class F. The e-covering number of the function
class F' with respect to the metric d is denoted as Ny(e, F).

A Proofs for Section 3

Al Proof of Theorem 3.1

In the sequel, we use Ey and E, to denote the expectation under the true distribution F'
and the regular parametric submodel F., respectively. The density function for F; is

fr(w) = p6(1 - p)l_éfT(y’w)l_(SQT(x)de(m)l_(s:

and the score function is given by
Sr(w) = (1 - 8)S, (yle) + 6SH (@) + (1 - 5)S2(),

where S, (y|x) = dlog f-(y|x)/0T, S2(x) = dlogp,(x)/oT and Si(x) = dlogg,(x)/oT,
satisfying

E{S,(Y|X)|X} = 0, E{5S1(X)} = 0 and E{(1—6)S%(X)} =0. (A1)

(i) Since E - {g(W,0,r(F;))} = 0, differentiating with respect to 7 gives

CEAGW,0,1(F))}| _ = TEAEW,0.m)}|_ + ~Eolg(W, 0.1 (F))}| . (A2)

Under Condition 2 and the mean-squared differentiability of the submodel F;, for any
0 € O, the differentiation and integration operators are exchangeable (see, e.g., Ibragimov
and Has’ Minskii, 1981) and it holds that

CEABW.0,)}|_ = Eola(W,0,r0)So(W). (A3)
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We now calculate the right-hand side of (A.2).

Eg(W.0.1(E) ~ B {1 —osZ.0r ()| ~ B { Je2.0)}.

p

Differentiating with respect to 7 gives

%ET{Q(W,G,T(FT))}‘ ; T {Zg(z 0)}

7=0

£ 7=0

EO{;g(Z 9)So( )}

- 50 { 26(2,0)50(X) + 2e(Z.0)50(¥1)}
{

_ 5y { Smy(x.0) so<w>} B (§(W,0,70)S0(Y|X)} |

(A.4)

0
p

where the first term of (A.4) is from (A.1) and iterated expectation. We proceed to find a
function h(W) such that the second term is equivalent to Eq{h(W)Ss(W)}. Note that

Eo {g&(W,8,70)S0(Y|X)} = Eo [g(W,8,70){So(W) — (1 —0)So(X)}]
= Eo {&(W,0,70)S0(W)} — Eo {&§(W,0,70)50(X)},

and the second term is equivalent to

1-96 1-6

1-p

E() {g(W,e,T’o)So( )} = { To(X)m()(X,G)So(X)} = E{

(A.5)
where the first equality is by the iterated expectation, and the second equality is because

of (A.1). Combining (A.2)-(A.5) gives

CRAE(W.0,r(F))| = By (W, 0.m0)5(W)}.

where ng(x) = (ro(x), mp(x)) and

)
Qo(wvgvn) = ;m(m’g) - 1 _pr(m)m(mva)u

It is straightforward to see that Eo{@(w,8,n9)} = 0 for any 6 € . In addition, because
the set of score functions is dense in Ly (F'), the influence function ¢ is uniquely determined.

(ii) Let ¥(w,0,n) = g(w,0,r) + p(w,0,n). Since Eo{p(w,O0,m0)} = 0, replacing F by
F; gives E - {¢p(w, 0,n(F:))} = 0. Differentiating this identity with respect to 7 = 0 gives

= ;_ET{(P(UJ7 07 n(FT>)} 7=0
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= LB (e(W,0,m0)) + ~Eolp(w, 0,n(F)) (A.6)

= Eo {p(W,0,10)So(W)} + ;TEo{sO(uu 0,n(Fr))}

= CRola(W,0.r(F))| _ + T Bolpw,0.m(E)| (A7)
= SER(W,0.n(E))|

where (A.6) is from differentiation by parts and (A.7) is from the result in (i).

(iii) First, ¥ can be rewritten as

0 1-9 1)
W(w,0.m) = 25(2,0) + {1 = or(e) - £ | g(2.0) - m(a,0)
Because Er{dg(Z,60y)} = 0, we have
B (W, 00m)) = B | {12000 - 2} ta(2,0) — m(x, 00

_Ey [{}:ZMX) - 2} (my (X, 0) —m(X,en] |

a

implying that Ex{® (W, 60y,1)} = 0 if either r(x) = ro(x) or m(x, ) = my(x, ).

Let A(z,0) = mg(z,0) —m(z,0) = (Ar,...,A,)". Since Ep[{(1—p)~1(1—8)ro(X) —
p L9}A(X,0)] = 0, we have

[Ep{¥;(W,00,m)}| =

e [ {1 0n(X) - 1= or(30} A,(X.00) |
= [Brl{ro(X) ~ r(X)}A,(X, 60)]

< Ep{lro(X) —r(X)[|A;(X, 60)l}

<l = roliage i 00) ~ mos.O0)lnyey (A8

which completes the proof. O

B  Proofs for Section 4

B.1 Proof of Lemma 4.1

According to Fenchel dual representation (Rockafellar, 1997), each convex ¢ can be ex-
pressed by:

¢(u) = sup{uv — d«(v)}.

veR
By the definition of Dy(Q|P), we have

DuQIP) = [ ¢ (j;;ixg) po(@)da
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- sup (o2 — 6. 012 ) mwie

~sup j (0(@)q0(@) — (o) )po () }dz

> SlipEQ{’U(X)} — Ep{¢«(v(X))},

where the supremum in the last two equality is taken over all measurable functions from
X — dom(¢x). Since for each fixed « in the third equality, v(x)qo(x) — ¢« (v(x))po(x) is
maximized at vy () = ¢; ' (qo(x)/po(x)) = ¢5 ' (ro(x)). By the convex duality theorem, we
have vy (x) = ¢/(ro(x)). Therefore,

¢'(ro) = arg max|Eq{v(X)} — Ep{¢«(v(X))}],

which implies that
ro = argmin[Ep{¢; 4(r) — Eqg{l2,4(r)}}],
T

where the arg min is taken over all nonnegative functions with the domain X. O

B.2 Proof of Theorem 4.1

Our proof proceeds in several steps. In Step 1, we present an error decomposition for
|7 =79 H%Q (P): In Steps 2 - 4, we investigate the deviations between the sample and population
excess risks via empirical process theories. Finally, we bound the empirical estimation error
by the Ls error in Step 5. Throughout the proof, we assume M; > B; without loss of
generality. For any r € Fy, we define its empirical error as |[r —ro|2 = 23" (r(X;) —
’r‘o(Xi))Q.

Step 1: Error decomposition. Denote ¢1(r,x) = ¢ {¢'(r(x))}, la(r,x) = —¢' (r(x)).
Let £1(r) = Ep {¢1(r, X)}, L2(r) = Eq {£2(r, X)}, and L1(r) = n= L X1, 41(r, X5), La(r) =
m~1 Y lo(r, X;). The population and the sample criterion function are:

L(r):=Ly(r)+ L1(r) and EA(T) = 21(7“) + Lo(r).

For any r1,ry : X — [0, 00), let

dg(r1,m2) i= Ly(r1) — Lg(ra) and  dy(r1,re) = Lg(r1) — Lg(r2).

Given a function class Fy, we define the best approximation for g realized by Fx and the
corresponding approximation error as:

ry = argmin|r — rollc and en :=||ry —70/o0-
7‘6.7:]\7

Note that ry and ey are both deterministic and depend only on the architecture of Fx
and the target function rq.



By the compactness of X and Condition 4, it can be shown that there exists a positive
constant L, such that for every r,v’ € Fy,

|li(r, @) — £i(r', ®)| < Lr(z) —r'(2)], (i=1,2),
for all € X, and there exists positive constants ¢; and co such that
c1lF = rol7,py < Li(r) = Li(ro) < ealF = rol7,pys (i = 1,2),.
Therefore, we have the following error decomposition:

cil[f = rol7,py <ds (F,r0) = dg (F,rn) + dg (rn, 1) < dg (7, 7n) + 263 (B.1)

We next bound dy (7,7n) by analyzing the process sup,cx,, |dg (7,7n) — c@) (r,rn) |,
mainly based on techniques of the local Rademacher complexity analysis of empirical risk
minimization (Bartlett et al., 2005 and Koltchinskii, 2011). First, we introduce some quan-

tities that are necessary in this approach. Let {&;}!"" be i.i.d symmetric, {—1, 1}-valued

random variables that are independent of {XZ}?:lm For any function class F, we define

1 n n+m
Rn(F) : ?cgg - i_zzlezf(XZ), R (F) : ?161;)_ — i_;l g f(X5).
The Rademacher complexities are defined as Ry, (F) = E {R,(F)} and R (F) = E{Rin(F)},
where the expectations are taken over both the X;s and the ¢;s. The empirical Rademacher
complexities, which are conditioned on the data, are denoted by Ry, (F) = E. {R,(F)} and
Ron(F) = E.{R,(F)}. For the candidate function class Fy, let the shifted (centered)
function class be

Fri={r—rn:reFn}.

The population version of the localized Rademacher complexities are defined as:
R0, %) o= R { : € F§ and | fluggy <0} and Ron(6,FR) = R {f : £ € F and | fly(q) < 6}

where § > 0 is a localization scale. Similarly, the empirical localized Rademacher complex-
ities are defined as:

Ro(8, F5) =R {f: feFi and || f|n <6} and Rp(6, FE) = R {f : f € Fi and ||f]m < 5}

A crucial parameter in the localized Rademacher complexity approach is the critical radius,
which is defined as §,, and 9, that satisfy the following inequalities:

62 > R0 )y 02 = R (0, F). (B.2)

For j = 1 and 2, denote the supreme deviations between /3]- (r)— /3]- (ro) and L;(r) — Lj(ro)
restricted in the localized ball centered at r¢ with the radius s as

(Zir) = Zi(rn)) = (£50) = £5(rw) (B.3)

My (s) = sup
[r=rnlLypy<s




and denote the supreme deviations between dg(r,7n) and c@,(r, rn) restricted in dg(r,rN)
as

An(s) = sup dg(r, 7)) — dg(r,7N)] (B.4)

lr—rNlLyp)<s
2

where s > 0 is a radius to be varied.

Step 2. Tail bound of A\y(s) . We first estimate an upper bound of the expectation of
An(s) for the s in the range [0, v 0y, 00). Let

ij\,(s) = {g 19 =1L;(r) —{;(ro) for re Fy and dy(r,r9) < 52}
for j = 1 and 2. Then by standard symmetrization arguments, we have
E{\y(s)} <2R,{GN(s)} and E{\}(s)} < 2R {Gx(s)}. (B.5)

Since both ¢, o ¢’ and ¢’ are L-Lipschitz continuous, by the Ledoux-Talagrand contraction
inequality due to Ledoux and Talagrand (1991), it holds that R, {GX(s)} < 2LRn(s, F&)
and R, {G%(s)} < 2LR,, (s, Fy). Therefore,

E{AN(s)} <4LR,(s,F%) and E{A}(s)} <ALRu(s, Fx)-

Since Fy; is star-shaped around ry (if r € F5;, then for any o € (0,1), ar € Ff;), the function
Rn(s, F¥)/s is non-increasing with resepct to s according to Lemma 13.6 of Wainwright
(2019). As s > 6, and 62 > Ry, {6, Fi}, it holds that Ry, (s, F&) < s6,. Similarly, we also
have R, (s, Fi) < 86, for s > &, , which delivers the upper bounds

E{AN(s)} <4Ls6, and E{Xy(s)} <4Ls6y (Vs =0y Vv o). (B.6)

We next bound the deviation between )\g\,(s) and E {)\3\,(5)} for j = 1 and 2. Note
that for any r € Fy, we have ||{;(r) — £;(rn)|loo < L|r — rn |0 < 2M1L, by the Lipschitz
condition of ¢4 o ¢’ and ¢’ and the boundness of r € Fy. In addition, the variance of
lj(r) —£;(rn) can be upper bounded by

Var(£;(r) = ;(rn)) <E{(¢;(r) — £;(rn))?}
<2 (Jr = ral3y + Ir = i)
<2(MLY|r — il p) < 20M1Ls)?, (B.7)
where the second inequality is implied by the Lipschitz condition, the third inequality is
due to Hf”i(@) =|f- 7”0”3;2(13) < BQ\\f\\%2(P) for any f: X — R, and the last inequality is

because of the localization condition |r —rn|z,p) S dg(r,7n) < s. Consequently, for any
u > 0 it holds that

P {Mo(6) > B4 () +u} <2esp —(n A m)u? )

8eVar(Ly(r) — £y(ro)) + 8Mi Lu
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Cy(n A m)u? ) |

<exp (-
P ( (MiLs)? + MiLu

for some universal constant C; > 0, by applying Talagrand’s concerntration equality (Ta-
lagrand, 1994) and (B.7). Therefore, we have

2
(P {)\}V(s) > ALsb, +u} v P{)\?V(S) > 4Ls6p + u}) < 2exp (— Ci(n n m)u > ,

(M1L8)2 + My Lu
for any s > (6, v 0y,) and u > 0. Since
AN () < Ay (s) + A% (s)

for any s = 0, we have

2
P{An(s) = 4Ls(6y, + 0m) + u} < 4dexp <_ Ci(n A m)u ) |

B.8
(2M, Ls)? + 2M, Lu (B8

for any s = (6, v i) and u > 0. Denoting oy := d,, + J,, and setting s = oy, u = M1L6]2V,
then we have

P{An(0n) = C10%} < dexp (—Ca(n A m)sy) , (B.9)
where Cy = (4 + M;)L and Cy = Cy/6. In addition, setting u = M;Lsdy yields

252
Cins=o%;

P{An(s) = C1s0n} < 2exp <_52+35N

) <4dexp (—Ca(n A m)512\7) , (B.10)
for any s = dn.

Let

Ay = {3 reFn:|r—rulip) <Oy and (@(r, r) — d(r, rN)‘ > clafv} . (B11)
Combining (B.4) with (B.9) yields that

P(A;) < dexp (—Ca(n A m)d3,) . (B.12)

The above tail bound (B.10) controls the largest deviation ‘czi)(r, rn) — dg(r, TN)‘ for r
within the local ball |r — ry||z,(py < dn. It remains to estimate an tail bound of the

deviation ‘@(r, rn) —dg(r,r N)’ outside this local region. We define the following event

./42 = {3 e fN : ”T‘ — TNHLQ(P) > 5N and C/l\d)(T, TN) — d¢(7‘, T’N)‘ = 20151\7“7‘ — T'N”L2(P)}

However, bounding P(.A3) is more delicate, since the function r that satisfies the requirement
in As is random. In the following step, we will use a “peeling” argument to address the
problem.



Step 3: Bound the event A, with the peeling argument. For m € N, we define the

events
Sy = {?” € Fn: Qmil(;N < HT‘ - TNHLQ(P) < 2m5N} .

By the boundness of r € Fy, we have |r — ry],p) < 2M;. Hence, any r € Fy n
{Ir — rn[ L,y > 0w} must locate in some Sy, for m € [K], where K < 2log(M;/én) + 1.
Since Aj is a subset of UX_,S,,, by the union bound we have P(Az) < Z%zl P(As N Sy).

Note that if r,, € A3 N S,,, then we can take s, = 2™y, and r, satisfies
H?"m — TNHLQ(P) < S, and )d¢(7'm,7“0) — d¢(rm,ro) = 2015]\[”7’ — 7"NHL2(p) > C10NSm,

where the last inequality is due to 2[r — ry|p,p) > 270N > s = 20N As a result,
Ao 0 Sy € {AN(Sm) = C18m0n} . Then according to (B.10), we obtain

P(A) < i PANS,) <2 i exp (—Ca(n A m)d%)
m=1 m=1
< dexp(—Ca(n A m)d3 + log K) < 4exp <—02(n/;m)612\7> , (B.13)
where the last inequality holds provided that
W > log (2log(M, /6x) + 1). (B.14)

The complement of As is composed by AS = By U Ba, where
Bl = {7“ € .FN : HT’ — TNHLQ(P) < 5N} and BQ = {T’ € ./—"N : ‘C/Z\(ﬁ(r, T’N) — d¢(r, T'N) < 201(5]\[”7" — TNHLQ(P)} .
Therefore, (B.13) implies that

Co(n A m)agv> |

P(Bl ) 82) >1—4exp (— 5

If 7 € By, then we have d(7,ry) < c20% sinceAd(?, rN) < co| 7 — ’I“NH%Q(P). Moreover, if
T € By, since ¢1|F — TNH%Q(]D) < dy(7,7N), and d(7,ry) < 0 by the definition of 7, we have

dy(7,7Nn) < 4c;?C36%,. This together with (B.12) leads to

C: 52
P{d(i)(?/“\, TN) < (02 \ 401_20%)5]2\[} = 1-— 4exp (—W) . (B.15)
Let C3 = cg v 4¢; 2C} and Cy = O3/2, combining (B.1) and (B.15), we obtain
~ C 52
P {clnr —rol2, ) < Cs8% + ch%} >1— 4dexp <—2("A2m)N> : (B.16)



Therefore, the estimation error |7 — 7|, (p) relies on the critical radius dy and the ap-
proximation error . In the next step, we provide an upper bound of the critical radius
ON.

Step 4: Estimation of the critical radius dy. In this step, we first estimate the
empirical critical radiuses §,, and &, satisfying

82 = kRp(6n, FL), 62, = kRom(Om, FX), (B.17)

m

where k is a fixed positive constant, ﬁn((Sn,}"j\‘,) and ﬁn(ém,fj\‘,) are localized empirical
Rademacher complexities, respectively, then use Proposition 14.25 of Wainwright (2019) to
obtain that

~

P(C40, < 6n < Cs6p) = 1 — Cgexp(—Crnd?) (B.18)

for some generic constants Cy,--- ,C7 > 0.

By the Dudley’s chaining, we have

~

12 (°
Ru(s, Fxr) < inf {4{1 + 7 L \/log (Ng(g,f]’i,,X{l)da)} : (B.19)

O<a<s

where X7 = (X1, -+, X,,). Since for any | f|, < maxi<i<n |f(X;)|, we have Na(e, Fr, X7) <
No (e, Fir, XT). Since | flloo < 2M for f € Fy, according to Theorem 12.2 of Anthony and
Bartlett (1999), we have

log(j\/'oo(e,]-“j’{,,X{‘))<Pdim(}"j’\‘,)( delMn )

ePdim(F7,)

When n > Pdim(Fy), let a = s4/Pdim(F3,)/n in (B.19), we have

) 12 (° . Pdim(Fy) deM 3
— Fi, X7 < — N —_— += :
inf {4(1 + Tn L \/log (NQ(E, N X7 )ds)} 163\/ log . + 5 logn

O<a<s n

Therefore, if s > 1/n and n > (4eM)?, the localized empirical Rademacher complexity can
be upper bounded by

~ Pdim(F}
Rn(s, Fa) < 323\/1m(N) log(n).
n
With such result, we find that the &, satisfying 3721 > ﬁn(gn, F3;) can be taken as

~ Pdim(F3 Pdi
on = 32]{\/111071(]\/) log(n) +u = 32k\/(hn;(m log(n) + u, (B.20)

for any u > 0. The empirical critical value d,, can be taken similarly. Using (B.16), (B.18),
and (B.20), we obtain that for any u > 0,

P{[7 = roll? ) < Cs (6n + & + )} > 1= Coexp(~New — Nu), (B.21)
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for some universal constants Cg and Cy > 0, where &y represents the stochastic error in
the estimation and is defined as

{nv = Pdim(Fy) (

log(n) 1og<m>>
+ :

m

Since N¢y = Pdim(Fy)log(N), we have exp(—N&y) < Cy* for large enough N. Therefore,
(B.21) implies that for large enough N and any ¢ > 0, it holds that

~ t
P {”7‘ —70l7,p) < Cs <€N + ey + N)} > 1 —exp(—t).

Step 5: Bound the empirical error by the Ly error.

In this step, we show that with high probability, the empirical error |7 — r|, is at most
twice the Lo error if r is in a given neighboring ball around 7.

Let g(r) = (r —rg)? for every r € Fn. Then since g(r) = (r + ro)(r — r0), we have
lg(r)| < 3M|r — ro| = 9MZ, implying that g(r) has a Lipschitz constant of 3My, and g(r)
is a bounded function. Furthermore, if r is restricted to a radius with |[r — 7o/ z,py < & for
some fixed constant £ > 0, then

Var{g(r)} < E{g*(r)} < E{(r —r0)"} < 9OM7E”.

By applying Theorem 2.1 of Bartlett et al. (2005), which is based on Talagrand’s concen-
tration, for every r with ||r — 7o/ z,(p) < &, it holds that

. 2t 12M?t
I = rolf = Ir = 7ol aey < BRu(g(r) 7€ P v = rolluaer) < ) + SMls\/: L

12M3t

)
n

~ 2t
< IBMyRa(€, FR) +3Miéy |~ + (B.22)

with probability at least 1 — e™* where the second inequality is due to (r — 7o) € Ff, the
Lipschitz continuity of g(r), and iterated expectations.

Now, suppose that the radius & satisfies

~ T2M?2t
§>3MARM¢fm,am1§>47f;, (B.23)

then (B.22) implies that with probability at least 1 — e,

I —70]? < €2/2 4 €2/2 + €2/6 < 262 for all r satisfies (B.23) and |r — 7ol Loy < €-
As shown in the calculation of the previous step, for large enough n,

t
¢ =Cs(én +en + 37)
satisfies the requirement in (B.23) for any given ¢ > 0. This together with P(|r—7o|z,p) <
€) > 1—et implies that P(||r —rg|2 < &) > 1—2e~*, which completes the proof of Theorem

4.1. O
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B.3 Proof of Theorem 4.2

We will apply Yang-Barron’s version of Fano’s method (Yang and Barron, 1999) to derive
the lower bound for the density ratio estimation.

Part 1. Let us first consider a sub-class of M% (31, By) defined by
My = {(}P’o,@) : Py is the uniform distribution , dQ/dP € H"' (X, By), in)f( dQ(x) > ¢o > 0} .
xre

Then for any two distinct elements (Pp,Q;) and (Pp,Q2) in M, their KL-divergence
D ((Py,Q1)|(Po,Q2)) can be bounded by

D (F0, @)I(F0, @) ~D(@ 1) = [ 1og (G20 ) e

[ (2 - [ ()

[ [

<! j (dQ(x) — dQa(a))”da. (B.24)

The above bound together with D ((P§",Q¢™)||(PF", Q$™)) = mD(Q1]Q2) implies
that for any € > 0, the e-covering number of M in the square-root KL divergence has an

NxL(e, M1) < Ny <\/g€, Q1> ;

where Q; is the function class of Q that is the second element of (P, Q) € M. By definition,
we know that Q is a sub-class of H”' (X, By), whose covering number is known from

upper bound:

classical theory (see e.g., Giné and Nickl, 2021). Therefore we obtain

d
log Nk, (e, M1) < log N, () <\/gg Ho (X, Bl)> = <B\€/ﬁ> . (B.25)

Applying Yang-Barron’s version of Fano’s method, we choose (e, d,) that satisfies

e2 > NkrL(e, M1) and  log M(20,,;d,©) = 4¢3, + log 2. (B.26)

Since the estimand is the density ratio function that belongs to H1 (X, B;), we have

1
i)

™l

log M (26,,;d,0) = ( (B.27)

With (B.25) and (B.27), (e, 6,) that ensures (B.26) can be specified as 2, = M7+ and
62, = mf%.
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According to Yang and Barron (1999), a minimax lower bound for the sub-class M; is
given by

2831

= m (B.28)

- o2
inf sup E|F—dQ/dP|* > -2
P (PQeM: 2

Part 2. Let us first consider another sub-class of M%(1, B;) defined by

My = {(P, Qo) : Qo is the uniform distribution , dQg/dP € H° (X, By), 0 < ¢; < dP(z) < ¢ < oo} .

For any two distinct elements (P1,Qp) and (P2, Q) in My, with the same argument as
in (B.24), we can obtain

mmwmm@m<wf5wmwmem

Since dQq(x) = 1, we write dP;(x) = ;' (z) with r;(z) € H% (X, By) for i = 1,2. Then the
above quantity can be upper bounded by

= 2t R S
it [ e et =t [ ()
<cher! f (n(@) = rafa) . (B.29)

Therefore, the square-root covering number of Ms in KL-divergence can be upper
bounded by the covering number of H” (X, By) in the La(p)-norm, leading to

log N1 (g, M2) < log N, (, /Ci—lne, HO (X, B1)> = <B\/ﬁ> ” (B.30)
2

£

for any € > 0. The rest procedure is similar to Part I and we omit here for simplicity. The
conclusion is for the sub-class My, a minimiax lower bound is given by

281

. 52 _ 28
inf sup E[|F—dQ/dP|* = 2 =n i+d, (B.31)

_n
T (PQ)eMs 2

Since M; and My are both sub-class of Md(ﬁl, By), their minimax lower bounds are
also lower bounds of /\/ld(,Bl, Bj). Combining the results in Part I and II, we obtain:

R 5 2B 2B 2B
inf sup E||r — dQ/dP|*z n ?1+d 4+ m 2h+d = N 281+d, (B.32)
" (PQEM?(B1,B1)
which completes the proof of Theorem 4.2. ]

B.4 Proof of Theorem 4.3

12



For any given distribution Py supported on R with a known density po(y), we let
P = Py x Px be the distribution of (17, X)for X ~Px and Y ~ Py, which is independent
of X, and let v.2)
- poly,
To(y, T) = Po(@)o(y)’
be the true density ratio function between P and P. Then, under Conditions 5 and 6,
applying Theorem 4.2 leads to

~ 2B
En{(r — FO)Q} =0, (N 252+?i+1log(N)) ,

for the estimator 7. Since Py|x = ?/:\ﬁy and py|X(y,:I:) = Topy, where py is a bounded
function, we have

En{(yix — pyix)?} = O, (N‘wffﬁﬂloguv)) | (B.33)

For any 0, let m(X;,0) = {g(y, X, 0)py | x (y| Xi)dy be the conditional mean function
with the estimated conditional density function py|x, then

N 2
~ 1 .
En{m(X,0) — my(X,0)}* = N D Ex [JQ(KLX@‘, 0){p(y| Xi) — pY|X(y|Xi)}dy] '
i=1
Since there exists a constant ¢ > 0 such that po(y|X) > ¢, we have
2
{J g (y, Xi, 0)||py|x (y| X:) _pY|X(y’Xz')|dy}
2
< e [ e X501y (010 — pyix X0l v 1)
<c! J le(y, Xi, 0) | 1py)x (W Xs) — py|x, (W1 Xa) P dy JPYX(?AXi)d?J
< o (V) [ Iy ix (01) by x, (012 Py +

+c! J lg(y, Xi, )1 (l&(y, Xi, 0)|* > log(N)|pyx (1 Xi) — py x (y Xi) [Pdy
=:I; + I, say. (B.34)

Note that as py|x (y|X;) and py|x(y|X;) are uniformaly bounded by a constant M > 0,

we have
Dy x (Y| Xi) — pyx (Y| X)|? < AM? + Mpo(y| X;) < (AM>*m™" + M)po(y|X;).  (B.35)

Hence, I5; can be bounded by

Ipi =c™! J lg(y, Xi,0)|*1(|g(y, Xi,0)|* > log(N))|pyx (41 X:) — py x (| Xs)|*dy

13



< [ X 0) 110 X O > tog(3) (41X )y
1/2

<{ ([ 18t .00 mtsix0a ) ([ 10800 X, 0) = low(Vm(r1 X)) |

<N
which implies En (I2;) < N~!. For the Iy; term, it can be seen that

_2B9
En(I1) < log®(N)En{(Py|x — py|x)*} = Op (N 252*‘1“10%3(]\[)) -
Hence,
28

Enx{m(X,0) — my(X,0)}* = En(I1;) + En(l2) = O, <N‘2Bz+3+1log3(N)> ,

which together with |m,(X;,0) — m(X;,0)| = Oy(1/4/k) complete the proof of Theorem

4.3. O

C Proofs for Section 5

C.1 Proof for the consistency of 0

Given the estimated 7, for any 6, we let ¥;(8,7) = ®(W;,0,n), ¥(0,7) = N~} SN w,(0,7),
and Q(0,m) = N3N W,(0,7)¥,(0,7)". With the EL estimator 6, we write W,(7}) =

Lemma C.1. Under Conditions 1 and 2, if the estimation errors satisfy

En(F) + En(g) = 0p(1) and En(F)En(g) = 0p(N2), (C.1)
then we have
N 1 N
— (W;,0,1n) W (W;,0,10) + op(1). (C.2)
\/> ; N =1

Proof. Note that for eachi=1,---, N,
‘I’(Wf”ueaﬁ)_‘:[l(m’97no) Rll( )+R2Z< )+R3Z( )7

where

SN e
- :fj{?(Xi) — ro(Xi) (X, 0)} — m(X;,6)},

m(Xi)} (@(X;.0)}) — m(X,.0)}.

Ra (1)

14



R3:(n) =

11:;5; {F(Xi) —ro(Xi)}{g(Zi, 0) — mo(X;,0)}.

Let Rj(n) = N2 Zfil R;;i(n) for j = 1,2,3. Then (C.2) can be shown if R;(7) = 0,(1)
for j = 1,2,3. For the first term,

E(RIAI(X)Y1) = Ex [{‘; ST} (.0} - m(Xi,e))}?]
< Ey [{(X;,0)} - m(X;,0)}°] = En(ig) = 0p(1),  (C.3)

where the first equality is due to

En{Rui(0)Rio(M){ X}, ) = 0,

for each 7 # i/, by the independence of (X, d;) and (X, d.), and Ex {% - 11__% rO(Xi)]Xi} =

0 for each 1 <i < N. Therefore, R1(n) = 0p(1). For the second term, we have

Ra(f) = VNEx { 1= FXG) = 10(X0)] 52X, 6) ~ m(X;.0)]}
< VNEN(PEN () = 0y(1)

by the Cauchy-Schwarz inequality and (C.1). Finally, for the third term,

E{R(A) (6, X)) = Ex [(11:32{?(&) —ro(X)Y28( 20, 80) — mo( X, 0)12](6, Xi}iN_l]
S B, [{F(XG) — ro(Xy)}* Var(g(Z:, 0)| X))} ]
< £4(F) = 0p(1).

Therefore, we have R3(n) = op(1). Since

2\1: W;,0,7) — Z ¥ (W;,0,n) = Ri(7) + Ra(7) + R3(n),

f f

the proof of Lemma C.1 is finished. O
Lemma C.2. Under Conditions 1 and 2, if the estimation errors satisfy
~ ~ _1
EN(P) + En(m) = 0p(1) and En(P)En(m) = 0p(N™2), (C.4)

then 6 = 6 + op(1).

Proof. The EL estimator 6 can be written as the solution to the saddle point problem
(Newey and Smith, 2004):

N
6 = arg min l 2 (AT, (0,1)), (C.5)
VIEC) )\eAN( )lel

15



where p(v) = log(1 + v) and Ay(8) = {\ : ATW;(0,7) € ( 1 oo)} For any & € (1/a,1/2)
where « is defined in Condition 2 (i), let A = N~$®¥(8, 77)/H\I’(0 n)H By Lemma Al
of Newey and Smith (2004), max;<y |)\ U,(7)| = op(1), and X € An(6) with probability
approaching 1. Thus, for any A € ()\,0). Let px be the k-th derivative function of p.
Then since p2(0) = —1, with probability approaching 1 we have pg()\T\ill(ﬁ)) > —C(i =
1,---,N) for some positive constant C;. In addition, by the Cauchy-Schwarz inequality,
Condition 2 (iii), and the uniform weak law of large numbers it can easily be derived that
N1 Zf\i 1 2,(6,7))®? < Col, for some positive constant Cy with probability approaching
1, meaning that the largest eigenvalue of N~! ZZ]\L 1 ¥,(0,7n) is bounded from above with
probability approaching 1. Taking the Taylor expansion for p(S\T\Pi(é, n)) at 0 gives

N N
1 o a1 1 P -
¥ 2 PATE(0,7)) = A(0,7) + SN {N > pz(AT‘I'i(H,n))‘I'i((?m))@g} A

Cl Cs

> N~¢|®(9,7)] - A2 = N~¢|®(8,7)| - CsN~%,  (C.6)

with probability approaching 1, where C3 = C1C4/2.

By the similar arguments as Lemma A2 of Newey and Smith (2004), it can be shown
that if for any 6 € © such that @ = 6y + 0,(1) and ¥(0,7) = Op(N_%), then

N
A = argmax N ! Z (A\T,(0,1))
AeAn () i=1

exists with probability approaching 1, also it holds that
N
1 T g 5 -1 -1
sup - Y p(A"i(0,7)) = Op(N7'), and X = Oy(N"2). (C.7)
AeA (60) N i=1
N\YO )
Setting @ = 6. Then, according to Lemma C.1,
T(6,9) = ¥ (0,m0) +0p(N"2) = O,(N"2),

which shows that (C.7) holds with @ = 6. Using the definition of the saddle point (5, A,
the inequality (C.6), and the claim (C.7) with , we have

N
o~ 1 - .
—¢ i —2¢ L ' ~
19 <
S Elp()\T\Ill(oﬂﬁ)) (C.8)



implying that | (6, 7)| = Op(NHHE) + O, (N~E) = O,(N ), since ¢ < 1/2. Now, suppose
ey is an arbitrary sequence that converges to 0 and let A\ = exy¥(0,7n), which implies
A = 0,(N~%). Then, similar to (C.8), we have

XU (8,7)| — C3| A2 = Op(N 7Y,

which implies ey (1 — Csen)|®(0,7)|> = O,(N71). Since 1 — Csey = O(1), we have
en|®(0,7)? = Op(N71) for any sequence ey = o(1). Then it follows that |¥(6,7)| =
Op(N_%). Similar to Lemma C.1, it implies that ®(6,m9) = ¥(0,n) + op(N_%) =

1

Op(N~3).

According to the uniform weak law of large numbers,

sup [ ¥(8,m0) — ¥ (6,m0)| = 0p(1),
6cO

which together with ¥(8), Mo) = op(1) implies \Il(é, M0) = op(1). Since ¥(6,19) = 0 if
and only if 8 = 8y and ¥(0,79) is continuous with respect to 6, ¥(6,n9) = op(1) implies
0 = 6y + o0,(1), which establishes the consistency of 6. O

C.2 Proof of Theorem 5.1

N

PN 1 1 ~
Qin(B, ) = — _ ,(0,7), and
1. ( ) N;1+)\T‘I’i(07n) (0,7)

1 Y 1 ow,(0,7)\

A~ i\v, N 3
Q, 97)‘ = a7 = ~ A
2n(6,A) = S w0, 5) 0

By Taylor expansion of QLN(é\, :\) =0 and Q2’N(é\, X) = 0 around (69, 0), we have

d 8,,0) ~ d 8,,0) ~

0 = Q1.n(60,0) + Q“;é”(e —0y) + Q“;(AO)A +0,(6y), and
d 8,,0) ~ d 85,0) ~

0= Q20(60,0) + "N G g, , CQNOOT, ) 50,

where oy = Hé— 0o + H:\H, leading to

A\ o [—Qin(00,0) + 0,(5n)\ o1 [—Q1.v(60,0) + 0p(6n)
<§—00> =Sy ( —Q2,n(60,0)0,(6n) )‘SN ( op(On) ) (G9)

where

0Q1,n(00,0)  0Q1,n(60,0)
Sy = o\ 00
N 0Q2,~n(00,0)  9Q2 N (00,0) | >

oA 00

17



and the partial derivatives are

0Q1.n(00,0) 1 O a%,(6,7) 0Q1n(00,0) 1 @2
0 N ; 06 ox N;‘I’Z(‘%’”) ’
0Q2v(60,0) _ 0Q2,n(60,0) _ 1 i 060, 1)\"
00 ’ O N4 00
Using the dominated convergence theorem, we can show that |m — mg| = o0,(1) implies

|6m/d0 — 0my/068| = o,(1). With the continuous mapping theorem and the law of large
numbers, we have

0Q1,n(00,0) _ . T op(1), 0Q1,n(00,0) _ T op(1),
00 oA (C.10)
0Q2,n(60,0) _ 0 0Q2,n(60,0) _ ™ 4 0 (1)
00 ’ oA L
where
r=E {‘N'(Wa’:o’m)} and Q =E {®(W,8,10)%?}.
From Lemma C.1, we have
1Y , .
Ql N 007 N ; W/M 907 TIO + OP(N E) = OP(N_§)7 (Cll)

where the last equality is due to the CLT. Combining (C.9), (C.10), and (C.11), and using
the continuous mapping theorem, we have

. —1
A [[(-erT Q1,5 (60,0) + 0p(dn)

assuming that the block matrix on the right-hand side is invertible. Since dy = |6 — 6| +
A, we know that oy = Op(N_%), which further implies that

VN — 6p) = {T™Q'T} ' TQ 'WNQ n(60,0) + 0,(1) > N (0, {T"Q'T} )

which completes the proof of Theorem 5.1. O

C.3 Proof of Theorem 5.2

Since for every 6 € O, the optimal empirical weight p; is given by

1 1
N1+X0)"%,(0,7)

pi =

18



where \(0) satisfies Q1 n(6,A(0)) = 0, the log EL statistics with a given @ can be written
as
£3(8) = log{1+ A(8)"W;(6, 7).

With 8 = 0y, solving Q1 n(6p,\) = 0 gives
1
AMB0) = 271Q1.n(00,0) + 0,(N™2).
Taking the expansion of £y (0y) leads to
N T -1
In(6o) = —5Q1,N(90,0)Q Q1,n(60,0) + 0p(1). (C.13)
Using the characteristic of A given in (C.12), and expanding ¢ N(é) gives

In(B0) = 5 Q% (B0, 0)AQ1x (80, 0) + (1), (©14)

where

A= 1+ 'n)-'rra-t}.

Therefore, Ry (6p) is equivalent to

Ry (60) = NQT n(60,0)(A — Q7 1Q1,n(60,0) + 0p(1)
= NQT §(60,0)Q7'T(I"Q'T)'T"Q'Q1,n (60, 0) + 0p(1).

Note that (—Q)_%\/ﬁ Q1,~(0p,0) weakly converges to a standard normal distribution, and

N|=

(—Q) 2 I("Q 1) 07 (—-Q)~

is symmetric and idempotent with the trace equal to r. Hence, Rxy(6y) LA X2, which
completes the proof of Theorem 5.2. O

C.4 Proof of Theorem 5.3

We present the proof for the density ratio estimation, since the conditional density estima-
tion can be proved similarly. Throughout this proof, we take the compact covariate domain
X = [0,1] without loss of generality. The main idea for the proof, which is similar to
that of Theorem 6.1 of Jiao et al. (2023), is to project the data to a low-dimensional space,
where the DNN can be used to approximate the low-dimensional function.

Let ds = O(daqlog(d/5)/6%) be an integer such that dy < ds < d for any 6 € (0,1).
According to Theorem 3.1 of Baraniuk and Wakin (2009), there exists a matrix A e R%>?,
which maps a manifold in R? into a low-dimensional space R% and approximately preserves
the distance. To be more specific, such the matrix A satisfies AA™T = (d/ds)I4,, and

(1=0)|z1 — x2/2 < [Azy — Azaf2 < (1 +0)[z1 — 22

19



for every 1,22 € M,. Using A as a projection operator, we have

wsesmm-[ i

We now show that for every a € A(M,), there exists a unique * € M, such that
Az = a. Suppose that ' € M, is another point with Az’ = a. Then (1 — )|z — 2|2 <
|Az — Az'|s < (1+0)|x — 2|2 implies that | —'|2 = 0. Therefore, for any a € A(M,),
we can define x(a) = Sa({x € M,, Az = a}), where Sa(-) is a set function that maps a set
to a unique element of this set. It can be shown that Sa : A(M,) — M, is a differentiable
function, because for every aj,as € A(M,),

5\\31 — ag|,

and the norm of the derivative of Sp is in the range [(1 + &)~ !, (1 —6)7!].

Given a function fy : [0,1]¢ — R, with the operator x(-), we can define its low-
dimensional representation fy : A(M,) — R by

fo(a) = fo(z(a)), for every ae A(M,) c R%.

Since rg € H7([0,1]9By), we have fo € HP(A(M,), B1/(1 — §)P1). Since M, is a compact
space and A is a linear operator, by Whitney extension theorem (Fefferman, 2006), there
exists Fy € HP' (Es, B1/(1 — 6)%1) with Es = [—+/d/ds,~/d/ds]%, such that Fy(a) = fo(a)
for every a € A(M,). According to Theorem 3.3 of Jiao et al. (2023), for any N, M € N,
there exists a function f : Es : R belongs to the DNN function class with the ReLU
activation function, whose width W = 38(s + 1)2d5"' J[log,(8.7)] and depth D = 21(s +
1)2M[log,(8M)], where s = | 1] such that
- . By

sup  |f(a) — Fy(a)| < 36 (s + 1)2V/dd2* (M) ~261/9s (C.15)
acEs\Q(Es) (1—9)

where Q(FEs) is a subset of Es whose Lebesgue measure is arbitrarily small, as well as
={xeM,: Ax e Q(FE;)} does.

Let fi = f o A, meaning that fi(x) = f(Ax) for every « € [0,1]% Then, f, is also a
DNN whose width and depth are the same as f. For every € M,\Q and a = Az, by the
definition of M, there exists a & € M, such that |& — x| < p. Then,

[fa(@) = ro(@)| < |f(Az) — Fo(Ax)| + |Fo(Az) — Fo(AZ)| + [Fo(Az) — ro()]

By 9 3s/2 —281/d By N N
<36 g+ Vdd"(IM) TG 4 | A — A& + [ro(&) — o ()|
< 36(1533)/31(5 + 1)2Vdd2 (T M) 2P %«/d/dé + pBi
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B
< 36+ Cy) g (s + DA () 2900,
where the second inequality is by (C.15), the smoothness of Fy), and the definition of Fy. The
third inequality is because |A|| = 4/d/ds and the smoothness of ry. The positive constant
C, is taken such that p < C,(1—8)'"P(s+ 1)2\/Edgs/2(JM)_2f31/d5 (\/d/ds+1—35)"1. Since
Px is absolutely continuous with respect to the Lebesgue measure, we have

2

~ B _
1o = ol ey < (36 + Cp) (=g (s D' (TM) =% (c.16)

As shown in the proof of Theorem 4.1,

B(17 - i3y < 0 (CRERER) L g ).

N N
for some positive constant C, where €% = inffery || foe — TOH%Q( Py According to Bartlett
et al. (2019), for the DNN class Fy with width W and depth D, its pseodu-dimension is
bounded by

Pdim(Fy) < C1W2D?log(W?2D),

where O is a positive constant. The approximation error €3 < | fs — 7"0||%2 (p) is bounded
by the right-hand side of (C.16). Therefore,

W2D?log(W?2D)log(N) B3
N (1—4)2m

Choosing J = 1 and M = NP5 with Ds = ds/(2(ds + 2B1)) leads to

(17 - mol2) < o (4 1T

__25
E{F —roll} < Coddy N5
where the positive constant C3 does not depend on N or d, which completes the proof. [
C.5 Proof of Theorem 5.4

With our Lemma C.1 and Theorem 5.3, the proof is obtained by assigning «(k) = 0 and
M =1 in Theorem 2 of Chang et al. (2015), and hence is omitted here.

D Proofs for Section 5

D.1 Proof of Theorem 6.1

Lemma D.1. Under Conditions 1-3, 4 (iii), 9, and 10,

1—9;
1—-p

1-6. 1 (6
\/NE { 1 pT(X)m(X)} = ﬁ Z:Z; {pm(Xz) - ’l"o(Xl)m(Xl)} + Op(l), (D.l)
where the expectation is taken with respect to X.
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Recall that the criterion function for the estimation of r is defined as

~

N
1
LN(T’) = N Z 6(51, X,‘; 7‘),
=1

where

(06, Xr) = 1
-Dp

n(xir) - 2o (Xir).
p

The directional derivative of £(d, X ; r) with respect to r in the direction u € Ly(P) is given
by

o5, X 1) [ur] = lim 06, X7+ tu) — 008, X;7)
du Jm ;
1-00 50
N {1—]367“61(er) - par&(X,r)} u(X)
= (W6, X;r)u(X), say. (D.2)

According to Condition 9. (ii), we have

1-60 00
(08, X57) = +— —, o2& In(X) = 2o b(X5r).

The first-order approximation error for ¢(d, X;rp) is denoted as

e(0, X,r —ro) = £(6, X;7) — £(6, X;70) — dd 06, X5m0)[r — o).

du
With the above notations, for any r € Fy, it holds that

Ln(r) =Ly (ro) + {Ln(r) — Ly (ro)}

N
=Ln(ro) + % D, Xisr) — £(5i, Xi570)}

i=1
- 1S (d
=Ly(ro) N ; {drﬁ(éi,Xi;ro)[T —ro] + e(d;, Xi;r — ro)}
. 1 d 1 &
=Ln(ro) + WGN <drf(5i, Xiiro)[r — r0]> + N ; e(d;, X3 —10), (D.3)
where the last equality is because
E {Czﬂ% Xisro)[r — ro]} = 0. (D.4)

We will employ the Cramer-Wald device to establish (D.1). For any v € RP with |v|| = 1,
we define 1. ¢, (x) = m(z)™v - (la(z,r)/0r)~L. For any r € Fy, let

F(T, eN) = (1 — €N)’I" + EN(TQ + Thvjz)
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be a local alternative value around r and
anf(r, 6N) = (1 — EN)T' + EN(T* + Th*),

where 7, = argmin, ¢z, |7 — 70|z, (ry and M. = argmin,,c . 1M — M4 4, | £, (). In the light
of Condition 10, we have Iz, 7(r,ex) € Fy and

_1
Sup ITry T, (ry €)= To,0 (7 €N) | 1y () = 0en - N77). (D.5)
TES N

By substituting r with 7 and Iz, 7#(7, €5 ), respectively, we obtain

S 1 d N 1Y .
LN(’I“) = LN(’I"()) + ﬁ@]\[ (drf((si,Xi;To)[’l" — T‘o]) + N;e(éi,Xi;r — ’f’o) (D.6)

and

R R . | d L
Ln(I1py T, (Tyen)) =Ln(ro) + WGN (drf(% X5 10) [Ty o 0o (T, €N) — 7“0])

N
1 ~
+ 5 D €0, Xy py P 0, (7 €n) — 7o) (D.7)
i=1
Subtracting (D.6) from (D.7) gives

NN B R 1 d ~ B ~
Ly(7) =LN(IpyToe, (T, en)) + WGN (dTE((Si, Xi;r0) [T — Hry T, (7, 6N)]>
N

1 ~ _ ~
+ D {e(0i, Xii 7 — 10) — e(8i, X3 Wy T 0, (7€) — 70)} - (D.8)
i=1
We will prove later in Subsection D.2 that

N

1 ~ ~
N > {e(6i, Xis Ty To gy (Fr en) — 10) — e(8i, X337 — 70)}
i=1
1—-6 . EN
= eN(l — EN)E (1 _p{T(XZ‘) - To(X)}mv(XZ)> + 0p <\/N> . (D9)
By the definition of 7, we have
Ly(7) = Ly (pyTo (7, en)) < O(e}),
which together with (D.8) and (D.9) yield
1 d . N
WGN 55(51', Xi310)[7 = Wry T 6, (T, €n)]
—en(1—en)E (1 — 5{?(X-) —ro(X)}m (X)) +o0 <6N> < O(€%) (D.10)
N N 1 —p % 0 v i P \/N = NJ- :

23



For the term Gy (%6(&, Xi;ro) [T — Hpy T e, (T, eN)]), we have

d ~ A
Gn <drﬁ(5i7 Xisro) [ — Hry o6 (7, 6N)]>
d ~ d A N
G (065 X 07 = o] ) + G ( 410605 X)) gy )]
d

=Gy (drﬁ(&, Xi;r0) [T — To0, (7 EN)]> + op(en),

where the last equality is due to (D.5) and the Chebyshev inequality. By the definition of

Tw o (T, €N), We have

d ~  _ ~
Gn <drf(5i,Xi;To)[7" — Tt (T €N)]>
d N d -
IGNGN (dE(éi,Xi;ro)[r — T‘[)]) — ENGN (dé(éi,X,-;ro)[mv,gD . (D.ll)
T T

We now show that Gy (%E(éi, Xi;m0)[F —10]) = 0p(1). By (D.2),

dié(éz, Xi; To)[?— 7“0] = 6(1)(51, Xi; To){?(XZ) — To(XZ‘)}.
r

Let
Fy = {g(l)(d,m;ro){r(m) —ro(®)}: r€FN,|r—rolLyr < 5N} ,

then it is evident that
log N} 1(€, Fv, La(F)) < log Np 1(e, Fiv, La(F))

for any € > 0. Therefore, the bracketing number of Fy satisfies

J1(0n, Fn, Lo(F)) = J \/1 +log Np (e, Fn, La(F))de
0

ON

< f \/1 + log N 1(€, Fn, La(F))de
0

— (6 F Lo(F)) = o(1)

by Condition 10 (iii). Also, for every f € Fy, it holds that |f[, = O(1) and 1oy =
O(0n). By applying Lemma 3.4.2 of van der Vaart and Wellner (1996), we have

Jp ](5N7JfN7L2(F))O(1)> — o(1)

E|Gnz, < Jp1(6n, F, La(F)) (1 + 2N
N

which, by the Markov inequality, implies that

sup Gy (N)(a,x;ro){r(a:) - ro(m)}) — 0,(1), (D.12)

T'E]:N
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meaning that

d

enGn <dr€(5i’Xi;T0)[?_ ro]) = op(en).

In addition, plugging 1, ¢(X;) = my(X;) - {a%EQ(Xh 70)} ! into the directional deriva-
tive specified in (D.2) gives

d i 1 (s :
-Gy <d7ﬂ€(5i, Xi; To)[mv,z]> =N Z; {pm'u(Xz) 1 pTO(Xl)mv(X1>} :
Combining the above results gives

d
Gy (d 0(04, Xi5m0) 77 — Ly o0, (T, eN)]>

:% ; {(;imv(Xi) _1= 5ir0(Xi)mv(Xi)} T oplen).

1-p

Therefore, multiplying the both sides of (D.10) by v/N/en leads to

N . — .
\/1N Z {(;va( i) — L 6Z7"0(X )My (X )} + op(en)
i=1

1-—
- VN = B (1) - (b (X)) = 0y(1) + 0, () = ay(1),

which completes the proof of Lemma D.1.

D.2 Proof of (D.9)

First, for any candidate r we can decompose e(d, X, — rg) as
6(67 X’ r—= TO)
d
d*€(5 X;ro)[r —ro]
1—§ 02 s 62
= (X
2{1—pé’r2 1(Xiro) = por?

where the remainder term R(6, X, ) is

=06, X;1) — £(6, X ;10) —

f(X: ro>}{r< ) (X)) + RS, X.r),  (D13)

1 ("X (1-4 0 5 o°
X,r)=— —— 0 (X;t) — —==la( Xt X) — t}2dt
RE X = [| e S = L )

and the last equality of (D.13) is due to the following Taylor’s theorem

f(b) = f(a) + f'(a)(b—a) + fﬂ;“) (b—a)* + ’ f”;(t) t)2dt.

25



Let

1—46 02 5 0%

(2) v ) _oa )

¢ (67X> : 1_par2€1(X7’r0) paTQEQ(XaTO)'
Then, according to Condition 9.(i), we have

0 0

gfl(X;?"o) = TO(X)g@(X;To),

6’2 82 0

5,2 01(X570) = 1o(X) =5 62(X5m0) + = £a(X5m0),

which implies that

1-6 02 0 5
(@5, X) = T {r 0(X) 35 62(X5m0) + arzz(x;ro)} S (X:ro).  (D.14)

The last term in (D.8) can be written as

%2 {e(di, X Iy 7,0, (T, ) — 10) — (05, X7 — 10) }
N . 2 9
LN Z {1 65;2 (X;m0) — 5;2 2(X; 7’0)} {Try T, (7 en ) (X)) — 70(X3)}2
N 9 )
B % {f,aizfl(X ro) = 552 2(X; ro)}{r( i) —ro(Xi)}
i=1

N
1 e ~ A
+ 5 ;{R(éi, X, Tz Tty (P en)) — R(6;, X5, 7)}

=:E1 N+ Eyn + E3 N, say.

For the term {ILz, 7y ¢, (7, en ) (X:) — 70(X;)}?, we have

{Try T, (7 en ) (Xi) — 70(X )}
={Iry Tty (P en ) (Xi) = Tty (P en) (X)) + Ty (P en) (X)) — 1o ( X))
—{TLry o0, (7, en)(Xi) = T, (Fy en)(Xi) + (1 — en) (F(X3) = 10(Xi)) + eniiig g, (Xi)}
(T Pt (7, €N ) (Xi) = Py (F en) (Xi) Y + (1 — en){P(XG) — 10(Xa) Y + exri, 4, (X))

+2(1 — en){ILry To 0 (7, €n) (Xi) — T, (T, en) (X)) HP(X) — r0(X5)}
+ 2eN {7y T 0 (7, € ) (Xi) — Ty (75 ) (Xi) }1700,0, (X2
+2(1 — en)en{r(Xi) — 10(Xi) J1700 0, (X). (D.15)

Using (D.15), we can decompose Ei N + Ea N as

Ein+ Ea N

N
=$ N6, Xi) (T ry Toea (7 en) (X2) — 10(Xi) Y2 — {F(X3) — 10(X)}]
=1
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IN 26(2) 0, X ){H}—NT’U 52(7‘ EN)(X) Tv £2<T EN)(X )}2

z 1
(l—zzjv\; Zg@) (6:, X)) {F(X )_TO(Xi)}2+2€jA\[/'£()(5“X) . 13(X)
N

2 (61, Xi) {Lpy o, (P ) (Xi) — Tty (7 en) (X)) HA(XG) — ro( X))

N
+ 4 2 (283, X Ty Tty (P n) (X3) = Tt (7 €8) (Xi) Y5 (Xi)

+€N(1_€N)§lg(2)<5, X){F(X3) = 70(X;) g, (Xi
N & iy <% T i rO( z)}mv,ﬁg( z)

:%E[ﬁ( (8, Xi) {TLry o 0 (P en) (Xi) = T o (P en) (X)L + 0, (1)}

eN — 2en

62
E[£) (61, Xi){7(X) — ro(X) F*1{1 + 0p(1)} + D E{CP (83, Xi)rig, ,(Xi) H{1 + 0p(1)}

+ (1= en)E[®) (8, Xi) (TLry o g (7 en) (X)) = Tty (P en) (X HP(XG) — ro(Xa) {1 + 0,(1)}

N BLC (5, X Ty o (7 ) () — o) (X0 (X))
i =N §1 605, 20) 7K - 10K oy (X
COMAR) + Oylen ) + Oy() + Oylendh) + Oy )
el S5, XF(X) — ro(X0 i (X0, (D-16)

=1

where the expectations are taken with respect to (9;, X;), and the last equality is by the
uniform boundness of £(2) (8, X ), the approximation error in (D.5), and the bounded moment
of |My 4, |?. For the last term in (D.16), we note that

N
% ST (8, X {F(X,) — 0(Xi) ity (X3)
i=1

:\/%GN ()51, X3 {F(X5) = r0(X) i (X))
+E (€95, X){7(X0) = ro(X0) b, (X)) (D7)

where the expectation is taken with respect to (d;, X;). By the stochastic equicontinuity
which can be derived with the similar arguments as for (D.12), we can obtain

Gy (426 X0) (F(X3) = ro(Xi) i, (X0) ) = 0p(1). (D.18)

In the light of (D.14) and 1, ¢, (X;) = me (X5) - {%EQ(Xi, r0)} !, the expectation term can
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be written as
E (6 (61, X)1R(X5) = 70(Xi) i, (X))

. 2
:E(Q{mm (X o) + jrgg(x;m}{?(X»—m(xi)}muxi)-{jrez(Xi,ro)}1)

2
_E{5 S (X)) = (X (X) - (52X} |

orz ?
=E<
1—

where the last equality is due to E{(1 — 0)ro(X)f(X)} = E{6f(X)} for any f(X). Com-
bining (D.16), (D.17), (D.18), and (D.19), and taking the convergence rate oy = op(N_%)7
we obtain

e 0xi) - m(X)}mv(Xi)) , (D.19)

By + Byn = ex(1— en)E G :2{?(&) - ro(X)}m,,(Xi)> + 0p (\%) . (D.20)

For the term FEs3 y, we let

1-6 03 583
H(X;t) — 0o

5(3)(57X3t) = ﬂﬁ 1

T h(X:1).

Due to %61 (X,t)=t- a%ég(X, t) imposed in Condition 9, we have

§ 3

Al (X0,

1—6 o3 2 0
E(?’)(d,X;t):l_p{taSE(Xt) Sala(X5t) + arﬁg(X;t)}

(D.21)

which is uniformly bounded by some positive constant ¢; according to Condition 9.(ii).

then F3 n can be decomposed as

Esn = Z{R 0ir X, WpyTo 0, (T €N)) — R(6i, X, 7)}

2 1
1 N o ~lry 7,0y (Fren)
03 (85, X33 )Ty T 0, (7€) — t}2dt
2N TQ(X)
LS M o5, x5 — 2
i Xist)r(Xy) —tg=dt
2N TO(X)

1 N HJ-er,Q(r,eN) @ A ,

TN & ik 0 (65, X5 ) {TLFy T 0 (T, ) — t}7dt
i=1 VT (A4

1 Y (X

2N : Z x (O)(6;, X5 ) [{F(Xi) — t}2 — {TLpy Fop, (7, en) — £}2]dt
To

=:Di1 Ny + Doy, say.
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For the term D1 n, we have

1 Mz To,eo (TheN) 3) R )
2|D1,N| = N R V4 (5i,Xi;t){Hfov7g2 (’I“,GN) — t} dt
i—1 Y7(Xi)
r N To,es (TheN)
c NTw. R
<ol (Tl o (P en) — t)2d8
Ni:l 7(Xi)
Cy N
=N (1= s3) |[{TryTo e (7 en) — ?(XZ)}?)‘ (for some s; € (0,1))
i=1

N
Ce _ A~ N
< Z ‘H}—NTU& (7, en) — r(Xi)’?’

N
2¢y N ~ _ ~ _ . .
< Z{|H]:NT1’7£2 (7, eN) = To6, (T, 6N)‘3 + [T, (T, €n) — T(Xi)lg}v

where the first inequality is from the uniform boundness of £(3) (0;, X5 t), the second equality
is by applying the mean value theorem, and the last inequality is from the inequality
(a +b)® < 2(a® + b3) for any positive a and b. From (D.5) it can be easily derived that
maxi<;<nN ’H]‘—va,b (?, EN) — Ty 0y (7/"\, EN)| = Op(l). For the term ’771,752 (’;’\, EN) — ;’\(XZ)|, we
have

2| =
1=

-
Il
—

To,e, (T, €n) — T(X5)| = en Z{T —10(X5) — 1w e, (Xi)} = Oplen),  (D.22)

2|~
9=

-
Il
—_

o0, (7 en) = F(X0)|” = 6?\/% Z{?(Xi) = 10(Xi) = w0, (Xi)}* = Op(ey), (D.23)
i=1

Using Lemma 2 of Owen (1990), it holds that maxj<i<n |0, (Xi)| = 0p(vV/N), which
together with the uniform boundness of 7 and ry and ex = 0,(N _%) imply that

max |7y s, (7, en) — 7(X;)| = eny max |7(X;) — 70(Xi) — M, (Xi)| = 0p(1).  (D.24)

1<i<N 1<i<N

Therefore, | D1 n| can be bounded by

EN
Dl < 0(cho%) + op(d) = o, (). (0.2

where the equality is due to ey = 0(]\77%) and dy = o(Nfi).

For the term Dy n, we have

2|Da n| = D60, X O [{P(X0) — 1) — (Iry T (7 en) — t)7]dt

1 (X) R R R R
=~ Z f ( )ﬂ( (01, Xis ) [{F(X3) — Tpy To gy (F en) HF(XG) + Ty T g, (7, €n) — 2t}]dt
i=1vro(X
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N o ~R(X;)

C ~ _ ~ A~ _ ~
s |7’(XZ) - H}—erlz (7’, 6N)‘ ’T(X,) + H]:er,% (7’, 6N) - 2t’ dt

N

N i=1Yro(X4)

N

N
% AR = ro(Xa)| [F(Xi) — Try P gy (7, )|
=1
. ‘?(Xz) + H]:va,gQ (7/“\, GN) — 2{52?(Xz) + (1 — SZ)T’()(XZ)}‘} (fOI‘ some S; € (0, 1))
N
= % D AR = ro(X)| [F(Xi) — Tzy P gy (7, )|
=1

MryTo e, (T en) — 7(Xi) + 2(1 — si){7(Xi) — ro(X3)}}

IN

N
Ce A~ _ A~ _ A~ _ A~ A~
N IR = ro(Xa)| (ITpy Fo ey (Fr €8) = To o (7 e)| + [Pty (P en) — P(X0)])
=1
(ryTo,e (T en) = Toe (T €n)| + [To 6, (7, en) — T(X5)| + 2[7(X5) — ro(X5)()}

N
Cy A~ _ ~ _ ~
= = Y R(XG) = ro(X)| Mry To ey (Fr en) = Tty (Fr en) [
N =1

(Xi) = ro(Xa)| My Tow,e, (7, €N) — Tty (7 €N )| T, (T, €n) — (X))

_l’_
s
M=
)

(X)) — 10(X3) | Try Tty 7y €n) — Tty (7€)

_|_
=&
1=

)

(Xi) = ro(Xo) | |To,0, (7, en) = F(Xi)| [Ty o b, (7 €N) = T (7 €|

+
=)o
L=
=

(Xi) = ro(X0)| [To05 (Fr en) — P(X3)|

+
=|e
=

=

~
Il
—_

(X)) — 10(X:) | |Fo o (7€) — P( X)) (D.26)

_l’_
z|&
=

=

where the first inequality is from the uniform boundness of £(3)(§;, X;;t) and the second
inequality is by applying the mean value theorem. By the uniform boundness of 7 and 7,
the approximation error in (D.5), (D.23), | — 70| 1,p) = Op(dn), and the Cauchy-Schwarz
inequality, we can obtain

N

1 ~ A A

N D UIR(XG) = 10(X)| [Try Py (7 €8) = Tty (Fren) P = Op(exday),
=1

1 N

~§ 2 7(Xa) = ro(Xa) | [Lry o0, (7€) = To,, (7 )| 7o 0 (7 en) = T(Xi) | = Op(€X6),
i=1

N
1 ~ N N
& 2 [F(X0) = ro(X0)[* My T, (7 €3) = T (7 €v)| = Op(endR)-
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By the uniform boundness of 7" and ro, |7 — o[ z,(p) = Op(dn), and (D.24), we have
1 ~ N ~
D 1P(X) = 10(X0)| 1o, (7 ) — P(X0) | = Op(ek)
LN
~ 2 ~ ~
& 2 [F(X0) = 10(X0)* [Fu,0s (7, €3) = F(Xi)| = Oplendy),

i=1

where the second result is obtained from the Cauchy-Schwarz inequality. Collecting the
above results and plugging them into (D.26), we can bound | Dz y| by

‘D2,N| < Op(e?vézz\/) + Op(€N5]2V) + Op(EN512V) + Op(e?v)

~ 0, (\j’%) , (D.27)

where the equality is due to ey = o(Nf%) and 0y = op(Nfi).

To sum up, we have shown that

EN
Esn=Din+ Dan =o0p <\/N> )

which together with the result for £y x + E2 n in (D.20) yield

N
1 ~ ~
N {e(di, Xy I py Ty (T, en) —10) — €(6, X357 —10) }
i=1
1—-6 .. EN
=en(l—en)E | 5 _p{T’(Xz') —70(X)}mo(X5) | + 0p Nidk
which is the desired result. O
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E Additional simulation results

In this part, we report additional results of the numerical simulations, including the infer-
ence for the mean of Y of the target population with the dimension of the covariate d = 5
in Table 1, and the inference for the mean and median Y of the target population with
d =10 in Table 2 and 3, respectively.

Table 1. Empirical estimation and inference results for § = Eq(Y") of the target population
with d = 5 based on 300 simulation replications. The five methods considered are the density
ratio weighting (DRW), the multiple imputations (MI), the proposed method with both the
density ratio weighting and the multiple imputations using the estimated nuisance functions
(DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the localized
double machine learning (LDML), and the covariance balancing (CB). The nominal coverage
probability of the confidence interval is 0.95.

Methods Bias  Std.dev MSE Coverage Length of CI

DRW -0.0168  0.1322 0.0175  0.9048 0.4087

MI 0.0203  0.147v1 0.0217  0.8736 0.3716

n — 1000 DRW-MI-E -0.0135 0.1304 0.0171  0.9265 0.3824
DRW-MI-T -0.0125 0.12v1 0.0163  0.9374 0.3791

LDML -0.0117  0.1426  0.0204  0.8592 0.3617

CB 0.0370  0.1683 0.0297  0.7332 0.4204

DRW -0.0149  0.1006  0.0103  0.9102 0.2817

MI -0.0182 0.1120 0.0129  0.8914 0.2546

= 9000 DRW-MI-E -0.0118 0.0937 0.0089  0.9350 0.2972
DRW-MI-T -0.0121 0.0922 0.0086  0.9550 0.2935

LDML 0.0130  0.1105 0.0124  0.9008 0.2780

CB 0.0302 0.1319 0.0183  0.7298 0.3064

DRW 0.0105  0.0772 0.0061  0.9163 0.1708

MI -0.0127  0.0869  0.0078  0.9081 0.1665

= 5000 DRW-MI-E 0.0084 0.0673 0.0046  0.9437 0.1812
DRW-MI-T -0.0081 0.0660 0.0043  0.9481 0.1845

LDML -0.0119  0.0882  0.0078  0.9083 0.1713

CB 0.0267  0.0941 0.0096  0.7510 0.1964
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Table 2. Empirical estimation and inference results for § = Eq(Y") of the target population
with d = 20 based on 300 simulation replications. The five methods considered are the
density ratio weighting (DRW), the multiple imputations (MI), the proposed method with
both the density ratio weighting and the multiple imputations using the estimated nuisance
functions (DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the
localized double machine learning (LDML), and the covariance balancing (CB). The nominal
coverage probability of the confidence interval is 0.95.

Methods Bias  Std.devn MSE Coverage Length of CI

DRW 0.0815 0.3048 0.0995  0.7296 1.1592

= 1000 MI -0.0902  0.3407 0.1242  0.7381 1.2157
DRW-MI-E 0.0521 0.2485 0.0645  0.8168 0.9052
DRW-MI-T  0.0347  0.2019 0.0419  0.8477 0.8895

LDML 0.0609 0.3601 0.1334  0.7201 1.3162

CB -0.1308 0.2724 0.0864  0.5942 0.8125

DRW 0.0701 0.2382 0.0616  0.7640 0.8619

n — 2000 MI -0.0736  0.2619 0.0631  0.7774 0.9015
DRW-MI-E -0.0452 0.1829 0.0355  0.8851 0.7824
DRW-MI-T -0.0301 0.1681 0.0291  0.9174 0.7637

LDML 0.0492  0.2128 0.0477  0.7831 0.8459

CB -0.0945 0.2209 0.0559  0.5781 0.7037

DRW 0.0539  0.1839 0.0367  0.8152 0.6729

n — 5000 MI 0.0569  0.2007 0.0435  0.8347 0.7138
DRW-MI-E -0.0335 0.1362 0.0196  0.9214 0.6042
DRW-MI-T 0.0304 0.1120 0.0135  0.9436 0.5814

LDML 0.0369 0.1783 0.0331  0.8152 0.7221

CB -0.0901  0.1821 0.0395  0.6515 0.5981
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Table 3. Empirical estimation and inference results for § = Q;l(l /2) of the target popula-
tion with d = 20 based on 300 simulation replications. The five methods considered are the
density ratio weighting (DRW), the multiple imputations (MI), the proposed method with
both the density ratio weighting and the multiple imputations using the estimated nuisance
functions (DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T'), the
localized double machine learning (LDML), and the covariance balancing (CB). The nominal
coverage probability of the confidence interval is 0.95.

Methods Bias  Std.devn MSE  Coverage Length of CI

DRW -0.0943  0.3420 0.1258  0.7169 1.2011

MI -0.0962 0.3541 0.1346  0.7215 1.2142

n — 1000 DRW-MI-E 0.0731 0.2685 0.0774  0.8280 1.0204
DRW-MI-T 0.0527 0.2301 0.0557  0.8505 0.9969

LDML -0.0693 0.3318 0.1148  0.7119 1.2650

CB -0.1436  0.2817 0.1001  0.5523 0.8856

DRW 0.0815 0.2740 0.0817  0.7593 0.8619

MI -0.0856  0.2802 0.0858  0.7324 0.8242

n — 2000 DRW-MI-E -0.0528 0.2129 0.0481  0.8613 0.7907
DRW-MI-T 0.0493 0.1891 0.0381  0.9038 0.7741

LDML 0.0566  0.2547 0.0681  0.7918 0.8109

CB -0.1231  0.2037  0.0566  0.5390 0.7074

DRW 0.0652 0.1971 0.0431  0.8098 0.6872

MI -0.0690 0.2085 0.0482  0.8209 0.7524

n = 5000 DRW-MI-E -0.0341 0.1381 0.0203  0.9209 0.6507
DRW-MI-T -0.0318 0.1152 0.0143  0.9367 0.5901

LDML 0.0392  0.1801 0.0339  0.8247 0.7349

CB -0.1056  0.1618 0.0373  0.5607 0.5890
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F Additional case study results

Figure 1 in the SM illustrates the distinctions between the distributions of some key vari-
ables of the target and the source samples, which reveals that directly using the source
samples to make inferences about the O3 of the target population would introduce biases.

Figure 1. Density plots for the O3 and covariate variables of the source and the target
samples.
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