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Chapter 7: Maximum Likelihood Estimates(MLE)

Let X = {X1, . . . ,Xn} be iid with distribution Fθ belonging to a family

F =
{
Fθ : θ = (θ1, . . . , θk)

T ∈ Θ
}
and suppose that the distribution Fθ

posses densities fθ(x). The likelihood function of the sample X is defined as

L(θ;X) =
∏n

i=1 fθ (Xi ).

1 The maximum likelihood estimate (MLE) is given by

θ̂ = argmaxθ∈Θ log L(θ;X) .

2 Often, the MLE θ̂ may be obtained by solving a system of likelihood
score equations,

∂ log L(θ;X)

∂θj

∣∣∣∣
θ=θ̂

= 0, j = 1, 2, · · · , k.

3 The variance of the score function is crucial for the AN of MLE.
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Fisher Information

Definition 7.1

Suppose that P = {Pθ, θ ∈ Θ} is dominated by a σ-finite µ. Say P is
Fisher-Information (FI) regular at θ ∈ Θ, if there exists an open
neighborhood of θ, say Θθ, s.t.

(i) fθ(x) :=
dPθ(x)
dµ > 0 for any x and θ ∈ Θθ.

(ii) ∀ x , fθ(x) is differentiable at θ.

(iii)
∫
fθ(x)µ(dx) can be differentiable under the integral at θ, i.e.∫

d
dθ′ fθ′(x)

∣∣
θ′=θ

µ(dx) = 0.

Definition 7.2

If a model P = {Pθ, θ ∈ Θ} is FI regular, then

I1(θ) = Eθ

[
d
dθ′ log fθ′(x)

∣∣
θ′=θ

]2
is called the FI in X at θ.
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Maximum Likelihood Estimate

Remark 1

(i) By def. of FI, we have Eθ

[
d
dθ′ log fθ′(X )

∣∣
θ′=θ

]
= 0, so:

In(θ) = var

(
d

dθ′
log fθ′(x)

∣∣∣∣
θ′=θ

)
(ii) If Θ ⊂ RK for K > 1, θ = (θ1, · · · , θK ), then:

d

dθ′
log fθ′(x) =


d
dθ′

1
log fθ′(x)
...

d
dθ′

K
log fθ′(x)

 ∈ RK

and

In(θ) = Eθ

[
d

dθ′
log fθ′(x)

(
d

dθ′
log fθ′(x)

)⊤
∣∣∣∣∣
θ′=θ

]
is the FI matrix.
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Maximum Likelihood Estimate

If P is FI regular at θ, and ∀x , fθ(x) is twice differentiable at θ, and
1 =

∫
fθ(x)µ(dx) can be differentiable w.r.t. θ under the integral, i.e.∫

d

dθ′
fθ′(x)

∣∣∣∣
θ′=θ

µ(dx) = 0,

∫
d2

dθ′2
fθ′(x)

∣∣∣∣
θ′=θ

µ(dx) = 0

Then,

I (θ) = −Eθ

[
d2

dθ′2
log fθ′(x)

∣∣∣∣
θ′=θ

]
The proof is evident.
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C-R Lower Bound

Let (X,X ,P = {Pθ, θ ∈ Θ}) be a p.s. of a r.v. X , where P ≪ a σ-finite
µ, fθ(x) =

dPθ
dµ . Suppose that:

(i) Θ ⊂ R is open.

(ii) A = support of fθ does not depend on Θ.

(iii) ∀ θ ∈ Θ, dfθ(x)
dθ exists.

(iv) Eθ

[
∂
∂θ log fθ(x)

]
=
∫ ∂fθ(x)

∂θ µ(dx) = 0 for any θ ∈ Θ.

(v) In(θ) > 0 for any θ ∈ Θ.

(vi) g : Θ→ R measurable and dg(θ)
dθ exists for any θ ∈ Θ, and ĝ : X→ Θ

is an unbiased estimator of g(θ).

(vii) d
dθ

∫
ĝ(x)fθ(x)µ(dx) =

∫
ĝ(x)dfθ(x)dθ µ(dx)

Then, varθ(ĝ(x)) ≥ [g ′(θ)]2/In(θ) or varθ(ĝ(x)) ≥ [g ′(θ)]⊤I−1
n (θ)[g ′(θ)]

for multivariate case.
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C-R Lower Bound

Remark 2

(i) [g ′(θ)]2/In(θ) is the C-R Lower Bound for unbiased estimator of g(θ).

(ii) Condition (iv) and (vii) are the most restrictive, they can be
established under a set of sufficient conditions.

Lemma 7.3

Under the conditions (i)-(iii) in above slides , and if there exists a
G : X×Θ→ R, s.t.
(a) ∀ θ ∈ Θ, G (x , θ) is X -measurable.

(b) EθG
2(x , θ) <∞ for any θ ∈ Θ.

(c) ∀ θ ∈ Θ, ∃ϵθ > 0, s.t.∣∣∣dfθ′(x)dθ′

∣∣∣ ≤ G (x , θ)fθ(x), ∀x ∈ A and |θ − θ′| < ϵθ.

then Condition (iv) is satisfied; and for all unbiased estimator of g(θ), say
ĝ(x), if Eθ(ĝ(x))

2 <∞, then Condition (vii) is valid as well.
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Proof

(Use MVT & DCT):

∀ θ ∈ Θ, |θ − θ′| < ϵθ, θ
′ ∈ Θ, as∫

X
fθ(x)µ(dx) =

∫
X
fθ′(x)µ(dx) = 1

so, ∫
X

fθ(x)− fθ′(x)

θ − θ′
µ(dx) = 0 (1)

From the MVT, Condition (iii), and Condition (c):∣∣∣∣ fθ(x)− fθ′(x)

θ − θ′

∣∣∣∣ = ∣∣∣∣dfθ̃(x)d θ̃

∣∣∣∣ ≤ G (x , θ)fθ(x) (2)

for some θ̃ between θ and θ′.
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Proof

Note that
∫
X G (x , θ)fθ(x)µ(dx) = EθG (X , θ) ≤ E

1/2
θ G 2(X , θ) <∞, by

DCT, ∫
X

dfθ(x)

dθ
µ(dx) =

∫
X

lim
θ′→θ

fθ(x)− fθ′(x)

θ − θ′
µ(dx)

= lim
θ′→θ

∫
X

fθ(x)− fθ′(x)

θ − θ′
µ(dx) = 0

which exactly is the Condition (iv).

On the other hand, suppose ĝ(x) is an unbiased estimator of g(θ)
satisfying Eθĝ

2(x) <∞, then:∫
X
ĝ(x)

fθ(x)− fθ′(x)

θ − θ′
µ(dx) =

g(θ)− g(θ′)

θ − θ′
(3)
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Proof

From (2), ∀ θ, θ′, s.t. |θ − θ′| < ϵθ, we have:∣∣∣∣ĝ(x) fθ(x)− fθ′(x)

θ − θ′

∣∣∣∣ ≤ |ĝ(x)|G (x , θ)fθ(x)

and: ∫
X
|ĝ(x)|G (x , θ)fθ(x)µ(dx) = Eθ|ĝ(x)|G (x , θ)

≤
[
Eθĝ

2(x)EθG
2(x , θ)

]1/2
<∞

as Eθĝ
2(x) <∞ and EθG

2(x , θ) <∞. Applying DCT on (3) by letting
θ′ → θ, then we get Condition (vii).
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Bhattacharya Inequality: C-R Bound is too low.

Theorem 7.4

Suppose the Condition (i) and (ii) in Slide 6. Now, if we give more restrictions on
other conditions:

(iii)* ∂ i fθ(x)
∂θi exists and

∫
X

∂ i fθ(x)
∂θi µ(dx) = 0, i = 1, · · · ,K, θ ∈ Θ.

(iv)*
∫
X

1
fθ(x)

(
∂ i fθ(x)
∂θi

)2
µ(dx) <∞, i = 1, · · · ,K, θ ∈ Θ.

(v)* ĝ(x) is an unbiased estimator of g(θ) with finite variance, and for any
i = 1, · · · ,K, θ ∈ Θ,

g (i)(θ) =
∂ i

∂θi
g(θ) =

∫
X
ĝ(x)

∂ i fθ(x)

∂θi
µ(dx)

Then, varθ (ĝ(x)) ≥ g̃⊤(θ)V−1(θ)g̃(θ), where V (θ) = (Vij(θ)) with

Vij(θ) = Eθ

[
1

f 2θ (x)

∂ i fθ(x)

∂θi
∂j fθ(x)

∂θj

]
, g̃(θ) =

(
g ′(θ), · · · , g (K)(θ)

)⊤
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Proof

Denote S = Sθ(x) = (S
(1)
θ (x), · · · ,S (K)

θ (x))T , where:

S
(i)
θ (x) =

1

fθ(x)

∂ i fθ(x)

∂θi

From Condition (iii)*, EθS = 0, from Condition (iv)*, varθ(S) = V (θ), and from

Condition (v)*, covθ
(
ĝ(x),S

(i)
θ (x)

)
= g (i)(θ), hence,

A := varθ

(
ĝ
S

)
=

(
varθ(ĝ(x)) g̃⊤(θ)

g̃(θ) V (θ)

)
Since |A| ≥ 0, and

|A| = |V (θ)|
[
varθ(ĝ(x))− g̃⊤(θ)V−1(θ)g̃(θ)

]
which implies varθ(ĝ(x))− g̃⊤(θ)V−1(θ)g̃(θ) ≥ 0.

Remark 3

Bhattacharya Inequality is an extension of C-R Inequality (K = 1)!
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Kullback-Leibler divergence

Kullback-Leibler divergence is a measure on the closeness between two
distributions Pθ and Pη.

Definition 7.5 (KL-divergence)

The Kullback-Leibler (KL) divergence of two probability measure from Pθ

to Pη

DKL(Pη∥Pθ) = −Eη log
pθ
pη

(X ), X ∼ Pη

where pθ, pη are the density functions of Pθ and Pη respectively.

The K-L- divergence is not a true metric, as

DKL(P ∥ Q) ̸= DKL(Q ∥ P) in general.

By concavity of the log, DKL(P ∥ Q) ≥ 0 and = 0 iff P = Q if the
models are identifiable.
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Identifiability

Suppose that we have an i.i.d. samples X1, . . . ,Xn ∼ X where X has
probability measure Pθ dominated by a underlying measure µ with density
fθ(x).

Definition 7.6 (Identifiability)

A parametric famility (i.e. a class of prob. densities)
PΘ := {fθ(x) : θ ∈ Θ} is identifiable if ∀θ1 ̸= θ2(θ1, θ2 ∈ Θ), we have

µ (x : fθ1(x) ̸= fθ2(x)) > 0

where µ is the dominated measure (Lesbegue or counting measure).

Identifiable parametric famility means no other parameter gives the
same probability distribution.

Identifiability is a sufficient condition in the Consistency of MLE. If the
parameter is not identifiable, then consistent estimators cannot exist.
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Cramer’s Consistency Condition

Lemma 7.7 (Minimizing the K-L distance)

Let PΘ := {fθ(x) : θ ∈ Θ} be a identifiable parametric famility. If
Eθ0 log fθ0(X ) <∞, then M(θ) := Eθ0 log[fθ/fθ0(X )], attains its maximum
uniquely at its true parameter θ0, i.e.

Eθ0 log fθ(X ) ≤ Eθ0 log fθ0(X ) <∞.

For θ ∈ Θ, since − log(t) is strictly convex, Jensen¡¯s inequality shows
that

Eθ0 log
fθ
fθ0

(X ) ≤ log Eθ0

fθ
fθ0

(X ) = 0.

By identifiable condition, the equality holds iff θ = θ0. Thus the expected
log-likilihood is the largest at the true parameter θ0.
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Consistency of MLE

Theorem 7.8

Let X1, · · · ,Xn i.i.d. Pθ, Θ ⊂ R and there exists an open neighborhood of
θ, say Θθ, s.t.

(i) A := {x |fθ(x) > 0} does not depend on θ.

(ii) ∀ x ∈ A, fθ(x) is differentiable at every θ′ ∈ Θθ.

(iii) Eθ log fθ′(X ) exists for all all θ′ ∈ Θ′ and is finite.

(iv) µ(x |fθ1(x) ̸= fθ2(x) for θ1 ̸= θ2) > 0, i.e. P = {Pθ} is identifiable.
Then, ∀ ϵ > 0, δ > 0, ∃mϵ,δ > 0, s.t. n > mϵ,δ satisfying:

Pθ{the equation
d

dθ′

n∑
i=1

log fθ′(Xi ) = 0 has a root within (θ − ϵ, θ + ϵ)} ≥ 1− δ
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Some Remarks

Remark 4

(1) As Xi ∼ Pθ, θ is the true parameter. The log likelihood is:

ℓn(θ
′) =

n∑
i=1

log fθ′(Xi )

(2) In (i) and (ii), we can require the properties are still true for any
x ∈ X and θ′ ∈ Θ, which may be more convenience to verify.
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Proof

WLOG, we assume ϵ is small enough s.t. [θ − ϵ, θ + ϵ] ⊂ Θθ. Note WLLN & (iii):

1

n

n∑
i=1

log
fθ±ϵ(Xi )

fθ(Xi )

Pθ−−→ Eθ log
fθ±ϵ(X )

fθ(X )
:= −ηθ±ϵ < 0

So ∀ δ > 0, ξ > 0, ∃m = mϵ,δ, ∀ n > m,

Pθ

{∣∣∣∣∣1n
n∑

i=1

log
fθ±ϵ(Xi )

fθ(Xi )
+ ηθ±ϵ

∣∣∣∣∣ < ξ

}
≥ 1− δ

2

By choosing 0 < ξ < min{ηθ−ϵ, ηθ+ϵ}, the above display implies for any n > m,
we have:

Pθ(A) := Pθ

(
1

n

n∑
i=1

log fθ(Xi ) >
1

n

n∑
i=1

log fθ+ϵ(Xi )

)
≥ 1− δ

2

Pθ(B) := Pθ

(
1

n

n∑
i=1

log fθ(Xi ) >
1

n

n∑
i=1

log fθ−ϵ(Xi )

)
≥ 1− δ

2
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Proof

As P(AB) = P(A)− P(ABC) ≥ P(A)− P(BC) ≥ 1− δ
2 −

δ
2 = 1− δ, we

have:
Pθ (ℓn(θ − ϵ) < ℓn(θ) and ℓn(θ + ϵ) < ℓn(θ)) ≥ 1− δ

Since ℓn(θ
′) is differentiable,

Pθ

(
∃ a local maximum of ℓn(θ

′) on (θ − ϵ, θ + ϵ)
)
≥ 1− δ

which actually implies:

Pθ

{
d

dθ′
ℓn(θ

′) = 0 has a root on (θ − ϵ, θ + ϵ)

}
≥ 1− δ

Remark 5

The root guaranteed by this Theorem is NOT necessary a MLE!
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Consistency of MLE

Theorem 7.9

Under the conditions of theorem 7.8, define θ̂n be the root of the
likelihood equation when there is exactly one root (otherwise adopt any
definition for θ̂n). If

lim
n→∞

Pθ (the likelihood equation has a single root) = 1 (4)

then:
θ̂n

Pθ−−→ θ
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Proof

For any ϵ > 0 and δ > 0, Theorem 7.8 implies ∃mϵ,δ, s.t. ∀ n > mϵ,δ,

Pθ(A) := Pθ (the LE has a root within (θ − ϵ, θ + ϵ)) ≥ 1− δ

2

On the other hand, the extra condition in the Theorem implies ∃m′
δ,

∀ n > m′
δ:

Pθ(B) := Pθ(the LE has a single root) ≥ 1− δ

2

So as long as n ≥ max{mϵ,δ,m
′
δ}, we have

Pθ

(
|θ̂n − θ| < ϵ

)
= Pθ(θ̂n is in (θ − ϵ, θ + ϵ)) = Pθ(AB) ≥ 1− δ

Remark 6

There is no guarantee that the LE essentially has a single root, i.e. (4),
this condition, however, has already an consistent estimator.
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Asymptotic Normality of MLE

Theorem 7.10
Let X1, · · · ,Xn i.i.d. Pθ0 , Θ ⊂ R, and there exists an open neighborhood of θ0, say Θ0,
s.t.

(i) fθ′(x) > 0 for all x and θ′ ∈ Θθ0 .

(ii) ∀ x, fθ′(x) is 3-times diffferentiable at ∀θ′ ∈ Θθ0 .

(iii) ∃M(x) ≥ 0 with Eθ0M(x) < ∞ and
∣∣∣ d3

dθ′3 log fθ′(x)
∣∣∣ ≤ M(x), ∀ x, θ′ ∈ Θθ0 .

(iv)
∫

d l

dθ′l
fθ′(x)

∣∣∣
θ′=θ0

= 0 for l = 1, 2. i.e.
∫
fθ′(x)µ(dx) = 1 can be differentiable

twice w.r.t. θ under the integral at θ.

(v) ∀ θ′, 0 < I1(θ
′) < ∞ where I1 is the FI based on single observations X1.

Let θ̂n is the MLE of θ. Furthermore, we require:

(vi) limn→∞ Pθ

(
θ̂n is a root of the LE

)
= 1 and Eθ| log fθ′(x)| < ∞ for any θ′ ∈ Θ.

(vii) θ̂n
p.−−→ θ0 and µ {x |fθ(x) = fθ′(x), θ ̸= θ′} = 0. Then

√
n(θ̂n − θ0)

d−−→ N(0, I−1
1 (θ0))
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Proof

Let Ln(θ
′) = n−1

∑n
i=1 log fθ′(Xi ) and:

0 = L′n(θ̂n) = L′n(θ0) + L′′n (θ0)(θ̂n − θ0) +
1

2
L′′′n (θ1)(θ̂n − θ0)2 (5)

where θ1 is between θ̂n and θ0. In writing (5), we note that Condition (vi) and
(vii) implies that: ∃,m, ∀ n > m, θ̂n is bothe a root of the LE and an element of
Θ0, i.e.

lim
n→∞

Pθ

(
θ̂n is the root of the LE & θ̂n ∈ Θ0

)
= 1 (6)

On the other hand, by the WLLN,

L′′n (θ0) =
1

n

n∑
i=1

d2

dθ2
log fθ(Xi )

Pθ−−→ −I1(θ0)
(v)
∈ (−∞, 0)

So,
L′′n (θ0) = −I1(θ0) + oPθ

(1) (7)
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Proof

Besides,

|L′′′n (θ1)| =
1

n

∣∣∣∣∣
n∑

i=1

d3

dθ3
log fθ(Xi )

∣∣∣∣∣
θ=θ1

(iii)

≤ 1

n

n∑
i=1

M(Xi )

Pθ−−−−→
WLLN

Eθ0M(X ) <∞.

So {L′′′n (θ1)} is tight, i.e. L′′′n (θ1) = OPθ
(1).

Note that θ̂n
p.−−→ θ0 as hypothesized, θ̂n − θ0 = oPθ

(1), hence,

(θ̂n − θ0)2L′′′n (θ1) = oPθ
(θ̂n − θ0). (8)
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Proof

From (5) - (8),

0 = L′n(θ0) + (−I1(θ0) + oPθ
(1)) (θ̂n − θ0) + oPθ

(θ̂n − θ0).

As,
√
nL′n(θ0) =

1√
n

n∑
i=1

∂ log fθ(Xi )

∂θ

d .−−→ N(0, I1(θ0)),

√
n(θ̂n − θ0) = −I−1

1 (θ0)
√
nL′n(θ0) + oPθ

(√
n(θ̂n − θ0)

)
= −I−1

1 (θ0)
√
nL′n(θ0) + oPθ

(1)
d .−−→ N(0, I−1

1 (θ0)).
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AN of MLE with compact and convex parameter space

Theorem 7.11 (Theorem 5.9 in Bijma&Jonker&Van der Vaart(2017))

Suppose that

The Θ is compact and convex and that θ is identifiable, and let θ̂n be
the maximum likelihood estimator based on a sample of size n from
the distribution with (marginal) probability density pθ;

Assume that the map ϑ 7→ log pϑ(x) is continuously differentiable for
all x , with derivative ℓϑ(x) such that |ℓϑ(x)| ≤ L(x) for every ϑ ∈ Θ,
where L is a function with EθL

2 (X1) <∞ ;

If θ is an interior point of Θ and the function ϑ 7→ I (ϑ) is continuous
and positive.

Then √
n(θ̂n − θ0) ; N

(
0, I−1(θ0)

)
.

Bijma, F., Jonker, M., & Van der Vaart, A. (2017). An introduction to mathematical statistics.
Amsterdam University Press.
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Chapter 8: M- and Z -Estimators
All of M- and Z -Estimators

We study the consistency and asymptotic normality of M-estimators
(proposed by Peter J. Huber) and Z-estimators . MLEs and ME are
treated as the special cases of M and Z -estimators, respectively.

Suppose that the parameter θ (or ”functional”) of interests attached
to the distribution of observations X n := (X1, . . . ,Xn) ∼ fθ(X ).

Definition 8.1 (M-estimator)

The M-estimator is to find an estimator θ̂n := θ̂n (X1, . . . ,Xn) that
maximizes a random criterion function of the type

θ 7→ Mn(θ)

For example, Mn(θ) =
1
n

∑n
i=1mθ (Xi ).

Huber, P. J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical
Statistics, 73-101.
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The Z -estimators

Often the maximizing value is sought by setting a derivative (or gradient)
equal to zero. So, the Z -estimators satisfies the estimating equations

Ψn(θ) =
1

n

n∑
i=1

ψθ (Xi ) = 0 (9)

Definition 8.2 (Z -estimator)

More generally, the Z -estimator is to find an estimator θ̂n that solves the
the estimating equations (9).

The M- and Z -Estimators does not require iid or independent
structure of the observations.

The minimization problem for function −Mn(θ) may be non-convex.

The Z -estimator is often numerically solved by (quasi-) Newton
methods, Gradient descent, Stochastic Gradient descent
(non-convex).
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Examples: parameter est. from dist. (Location)

MLE&PMLE

Let X1, . . . ,Xn ∼ pθ. Then the MLEs maximize the likelihood
∏n

i=1 pθ (Xi )
or equivalently the log-likelihood: Mn(θ) :=

1
n

∑n
i=1 log pθ (Xi ) .

Pseudo-MLE: Xi ’s may be dependent, the log-likelihood is still used.

Two examples of Location estimators

The sample mean and sample median which are Z-estimators solved by

Ψn(θ) =
1

n

n∑
i=1

(Xi − θ) = 0; and Ψn(θ) =
1

n

n∑
i=1

sign (Xi − θ) = 0

Quantile function for the distribution function F :

F−1(p) := inf {x ∈ R : F (x) ≥ p}
Median: med(X ) = F−1(0.5).
Quantiles: θ0 = argmin

θ
Eρτ (x − θ) = F−1(τ), (HW).
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Examples: Quantiles

Define the check function: ρτ (y) = y(τ − I(y<0)) as the loss function.

Then the τ -sample quantile θ̂ can seen as the M- and Z -estimators.

Sample quantile

Mn(θ) :=
1

n

n∑
i=1

ρτ (Xi − θ); and

Ψn(θ) :=
1

n

n∑
i=1

((1− τ)1 {Xi < θ} − τ1{Xi > θ}) = 0

For small sample size n, vdv’s book gives an alternative def. of the
τ -sample quantile: θ̂ solves the inequalities :−1 < nΨn(θ) < 1.
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Examples: Huber estimators

The Huber estimators were motivated by studies in robust statistics
concerning the influence of extreme data points on the estimate.

Huber estimators

Corresponding to the Huber Ψ functions

ψ(x) = [x ]k−k :=


−k if x ≤ −k
x if |x | ≤ k
k if x ≥ k

The Huber estimators solves the following estimating equations.

Ψn(θ) =
1

n

n∑
i=1

ψ (Xi − θ) = 0

The Huber estimators behave more like the mean (large k) or more like
the median (small k) and thus fill in the gap between the nonrobust mean
and very robust median.
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Two Pictures for Z -estimator of local parameter
44 
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Figure 5.1. The functions e H> Wn (e) for the 80% quantile and the Huber estimator for samples of 
size 15 from the gamma(S ,  1) and standard normal distribution, respectively. 

All the estimators considered so far can also be defined as a solution of a maximization 
problem. Mean, median, Huber estimators, and quantiles minimize 2:7=1 m (Xi - e) for m 
equal to x2, lx l , x2 l l x l :sk + (2k lx l - k2) 1 1x l >k and ( 1 - p)x- + px+ , respectively. D 

5.2 Consistency 

If the estimator en is used to estimate the parameter e ,  then it is certainly desirable that 
the sequence en converges in probability to e .  If this is the case for every possible value 
of the parameter, then the sequence of estimators is called asymptotically consistent. For 
instance, the sample mean X n is asymptotically consistent for the population mean EX 
(provided the population mean exists) . This follows from the law of large numbers. Not 
surprisingly this extends to many other sample characteristics . For instance, the sam­
ple median is consistent for the population median, whenever this is well defined. What 
can be said about M -estimators in general? We shall assume that the set of possible 
parameters is a metric space, and write d for the metric. Then we wish to prove that 
d(Bn , e0) � 0 for some value e0 , which depends on the underlying distribution of the 
observations. 

Suppose that the M -estimator Bn maximizes the random criterion function 

Clearly, the "asymptotic value" of Bn depends on the asymptotic behavior of the functions 
Mn . Under suitable normalization there typically exists a deterministic "asymptotic criterion 
function" e f--+ M (e ) such that 

every e .  (5 .6) 

For instance, if Mn (e ) i s  an average of the form JIDnme as in (5 . 1 ) , then the law of large 
numbers gives this result with M(e) = Pm11 , provided this expectation exists . 

It seems reasonable to expect that the maximizer en of Mn converges to the maximizing 
value e0 of M.  This is what we wish to prove in  this section, and we say that Bn is 
(asymptotically) consistent for e0 . However, the convergence (5.6) is too weak to ensure 

Figure: The functions θ 7→ Ψn(θ) for the 80% sample quantile and the Huber
estimator from the gamma(8, 1) and standard normal distribution, respectively.
n = 15.
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Consistency of M-Estimator

The estimator θ̂n is used to estimate the parameter θ aiming at : θ̂n
P→ θ,

where θ ∈ Θ endowed with metric d .
Suppose that the θ̂n maximizes the random (empirical) criterion function:

θ̂ = argmax
θ∈Θ

Mn(θ) = argmin
θ∈Θ

−Mn(θ).

where −Mn(θ) =: L(Pn,P) can be seen as the empirical loss function.

Definition 8.3 (True parameter)

The θ0 is usually defined as the maximization of the deterministic (true)
criterion function: M(θ) =: Emθ(X )

θ0 = argmax
θ∈Θ

Emθ(X ) = argmin
θ∈Θ

E−mθ(X ).

We wish to prove that d(θ̂n, θ0)
P→ 0 under some regularity conditions

Mn(θ)
P→ M(θ), every θ.

by LLN. The convergence above is not uniformly for θ ∈ Θ!
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Consistency of M-estimator

Given an arbitrary random function θ 7→ Mn(θ), consider estimators {θ̂n}
satisfies the nearly maximization condition:

Mn(θ̂n) ≥ sup
θ∈Θ

Mn(θ)− oP(1)≥ Mn (θ0)− oP(1).

Example: −Mn(θ) is strongly convex. [iff M̈n(θ) ⪰ O(1)I p > 0 ∀θ ∈ Θ.]

Theorem 8.4 (Consistency of M-estimator)

Let Mn be random functions and let M be a fixed function of θ such that
for every ε > 0, if we have conditions:

C1. Uniformly convergence: sup
θ∈Θ
|Mn(θ)−M(θ)| P→ 0;

C2. Well-separation(Identifiability): sup
θ:d(θ,θ0)≥ε

M(θ) < M (θ0);

C3. The {θ̂n} satisfies nearly maximization condition . Then, θ̂n
P→ θ.
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A counterexample for well-separation

5. 2 Consistency 45 

Figure 5.2. Example of a function whose point of maximum is not well separated. 

the convergence of fJn . Because the value fJn depends on the whole function e r--+ Mn (e ) , 
an appropriate form of "functional convergence" of Mn to M is needed, strengthening the 
pointwise convergence (5 .6) .  There are several possibilities . In this section we first discuss 
an approach based on uniform convergence of the criterion functions . Admittedly, the 
assumption of uniform convergence is too strong for some applications and it is sometimes 
not easy to verify, but the approach illustrates the general idea. 

Given an arbitrary random function e r--+ Mn (e) , consider estimators fJn that nearly 
maximize Mn , that is, 

Mn CfJn ) :::: sup Mn (e) - Op ( l ) . e 
Then certainly Mn CfJn ) > Mn (eo) - op ( l ) ,  which turns out to be enough to ensure con­
sistency. It is assumed that the sequence Mn converges to a nonrandom map M: 8 r--+ JR. 
Condition (5 . 8) of the following theorem requires that this map attains its maximum at a 

· unique point e0 , and only parameters close to e0 may yield a value of M (e ) close to the 
maximum value M(e0) .  Thus, e0 should be a well-separated point of maximum of M .  
Figure 5 .2 shows a function that does not satisfy this requirement. 

5.7 Theorem. Let Mn be random functions and let M be a fixed function ofe such that 
for every E > Qt 

sup iMn (e) - M(e) l � 0, 
0E8 

sup M(e) < M(e0 ) .  
(5 .8)  

e : d(O , Oo) ?::c: 

Then any sequence of estimators fJn with Mn CfJn) :=:: Mn (eo) - op ( l )  converges in proba­
bility to eo . 

t Some of the expressions in this display may be nonmeasurable. Then the probability statements are understood 
in terms of outer measure. 

Figure: Example of a M-function whose point of maximum is not well separated.
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Proof of Theorem 8.4

By the well-separation assumption C2, ∀ε > 0, ∃ η > 0 s.t.:

M(θ) < M (θ0)− η for every θ with d (θ, θ0) ≥ ε

Put θ = θ̂n. Thus, {d(θ̂n, θ0) ≥ ε} ⊆ {M(θ̂n) < M(θ0)− η}. Then

P{d(θ̂n, θ0) ≥ ε} ≤ P{M(θ0)−M(θ̂n) > η} ???→ 0. (10)

Next, we show that “
???→ 0” is valid by using C3 and C1. By C3, it gives

Mn(θ̂n) ≥ Mn (θ0)− oP(1) = M (θ0)− oP(1). (11)

where the “=” in (11) is by C1: Mn(θ)
P→ M(θ) for ∀θ ∈ Θ. Using (11),

M(θ0)−M(θ̂n) ≤ Mn(θ̂n)−M(θ̂n) + oP(1)

≤ sup
θ∈Θ
|Mn(θ)−M(θ)|+ oP(1)

P→ 0 [by C1].

Let n→∞ in (10), it implies d(θ̂n, θ0)
P→ 0.
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Consistency under the modification of C1 in Theorem 8.4

Corollary 8.5

Under the (i) uniformly convergence C1 in Theorem 8.4, if we have :
(ii). Unique maximization: M(θ) =: Emθ(X ) is uniquely maximized at
θ0;
(iii). Compactification: The Θ is compact;

(iv). Continuous M-function: The M(θ) is continuous. Then, θ̂n
P→ θ

for any θ̂n satisfying (v) Mn(θ̂n) ≥ Mn (θ0)− oP(1).

Proof: For ∀δ > 0, let Bδ(θ0) := {θ : d(θ, θ0) < δ}. By (ii-iv), we have

sup
θ∈Θ∩Bc

δ (θ0)
M(θ) =: M(θ∗) < M(θ0) for a θ

∗ ∈ Θ ∩ Bc
δ (θ0).

For sufficient large n, ∃ ε > 0 s.t.

M(θ̂n)
(1)
> Mn(θ̂n)− ε/3

(2)
> Mn(θ0)− 2ε/3

(3)
> M(θ0)− ε (12)
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In (12): “
(1)
>” is by (i) and “

(2)
>” is due to (v) and “

(3)
>” stems from (i), i.e.

(1) From (i) sup
θ∈Θ
|Mn(θ)−M(θ)| P→ 0. E1

(2) Taking oP(1) < ε/3, then Mn(θ̂n) ≥ Mn (θ0)− oP(1) > Mn (θ0)− ε/3
with probability approaching 1 (wpa1). E2

(3) The same as (1). E3

Let ε = M(θ0)−M(θ∗) > 0, plugging this ε into (12) we get

M(θ̂n) > M(θ∗) wpa1

by P(E1 ∩ E2 ∩ E3) ≥ P(E1) + P(E2) + P(E3)− 2.
It should be noted that

{M(θ̂n) > M(θ∗)} ⊆ {d(θ̂n, θ0) < δ}

since θ∗ maximizes M(θ) only in Θ ∩ Bc
δ (θ0).

Then by letting n→∞

1← P{M(θ̂n) ≥ M(θ∗)} ≤ P{d(θ̂n, θ0) < δ} ≤ 1.
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Consistency of Z -Estimator

Theorem 8.6 (Consistency of Z -Estimator)

Let Ψn be random vector-valued functions and let Ψ be a fixed vector-
valued function of θ such that for every ε > 0, if we have :
C1∗. Uniformly convergence: sup

θ∈Θ
∥Ψn(θ)−Ψ(θ)∥ → 0;

C2∗. Well-separation (Identifiability):
inf

θ:d(θ,θ0)≥ε
∥Ψ(θ)∥ > 0 = ∥Ψ(θ0)∥;

C3∗. The {θ̂n} satisfies nearly zero condition: Ψn(θ̂n) = oP(1). Then,

θ̂n
P→ θ.

Proof: This follows from the Consistency of M-estimation by applying
Mn(θ) = −∥Ψn(θ)∥ and M(θ) = −∥Ψ(θ)∥.
We can see that nearly maximization turns to nearly zero condition:

−∥Ψn(θ̂n)∥ ≥ −∥Ψn (θ0) ∥ − oP(1) = −∥Ψ(θ0) ∥ − oP(1) = −oP(1).
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Consistency without in uniformly convergence

Lemma 8.7 (p47 of vdv)

Let Θ be a subset of the real line and let Ψn be random functions and Ψ a

fixed function of θ such that Ψn(θ)
P→ Ψ(θ) for every θ. Assume that:

(a1)Each map θ 7→ Ψn(θ) is continuous and has exactly one zero θ̂n, (a2)
or is nondecreasing with Ψn(θ̂n) = oP(1) ;
(b)Let θ0 be a point s.t. Ψ(θ0 − ε) < 0 < Ψ(θ0 + ε), ∀ε > 0. Then,

θ̂n
P→ θ.

Example 8.8 (Median)

The sample median θ̂n is the zero θ 7→ Ψn(θ) = n−1
∑n

i=1 sign (Xi − θ) .
By the LLN, for every fixed θ,

Ψn(θ)
p→ Ψ(θ) = E sign(X − θ) = P(X > θ)− P(X < θ).
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Example 6.8 (con.)

The uniform convergence in C1∗ of Theorem 6.6 is hard to check. It will
need the theory of Empirical Process (will be studied in the next
half-semester) to establish the uniform convergence.

van der Vaart, A. W., Wellner, J. (1996). Weak Convergence and Empirical Processes: With
Applications to Statistics. Springer.
Van de Geer, S. A.(2000). Empirical Processes in M-estimation. Cambridge university press.

In this case it is easier to apply Lemma 6.7.
(a) The functions θ 7→ Ψn(θ) are non-increasing.
(b) −Ψ(θ0 − ε) < 0 < −Ψ(θ0 + ε). To see (b),
Ψ(θ0 − ε) = P(X > θ0 − ε)− P(X < θ0 − ε) = 1− 2P(X < θ0 − ε);
Ψ(θ0) = P(X > θ0)− P(X < θ0) = 0⇒ P(X > θ0) = P(X < θ0) = 0.5;
Ψ(θ0 + ε) = P(X > θ0 + ε)− P(X < θ0 + ε) = 1− 2P(X < θ0 + ε).

If X is continuous and the population median is unique, i.e.

P (X < θ0 − ε) < 0.5 < P (X < θ0 + ε) ∀ ε > 0.

Applying Ψn(θ) to (a2)+(b) of Lemma 6.7, it implies θ̂n
P→ θ0.
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Wald’s Consistency

The semi-continuity is a property that is weaker than continuity. A
function f ∈ R is said to be upper semi-continuous (u.s.c.) if

lim sup
x→x0

f (x) ≤ f (x0).

[to be lower semi-continuous(l.s.c.) if −f is l.s.c.:lim infx→x0 f (x) ≥ f (x0).]

Figure: An l.s.c. function. Figure: An u.s.c. function.

The u.s.c. M-function is used for Wald’s Consistency Condition.
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Wald’s Consistency Condition

Let Pmθ : = Emθ(X ). Typically, the map θ 7→ Pmθ has a unique global
maximum at a point θ0, but here we allow multiple points of maximum

Θ0 := {θ0 ∈ Θ : Pmθ0 = sup
θ

Pmθ} ≠ ∅ M attains its local maximum.

Theorem 8.9 (Wald’s consistency for M-estimator)

For every compact set K ⊂ Θ, Wald’s consistency Conditions for
P(d(θ̂n,Θ0) ≥ ε, θ̂n ∈ K )→ 0 is that
W1. U.S.C. condition: Let θ 7→ mθ(x) be u.s.c. for almost all x;
W2. Uniformly bounded on small-balls: For ∀ small-ball U ⊂ Θ,
assume x 7→ supθ∈U mθ(x) is measurable and satisfies the

E supθ∈Umθ(X ) <∞. (a DCT condition) (13)

W3. Nearly maximization on compact set: The {θ̂n} satisfies

Mn(θ̂n) ≥ Mn (θ0)− oP(1) for some θ0 ∈ Θ0.
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Proof of Wald’s consistency

Let B = {θ ∈ K : d (θ,Θ0) ≥ ε}, we are going to show:

P{θ̂n ∈ B} → 0.

If the function θ 7→ Pmθ is identically −∞, then Θ0 = Θ trivially. We
may assume that there exists θ0 ∈ Θ0 such that Emθ0 > −∞, thus

E |mθ0(X )| <∞ by (13).

Fix some θ ∈ K and let Ul ↓ θ be a decreasing sequence of open balls
around θ of diameter converging to zero. Let
mU(x) := supθ∈U mθ(x). For every l , the sequence

mθ ≤ mUl
= sup

θ∈Ul

mθ(x) is decreasing in l (14)

and taking limit in (14) we have

mθ ≤ lim
Ul→θ

mUl
≤ mθ-a.s.

where the last ≤ by the upper semi-continuity of mθ(x).
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With mUl
↓ mθ a.e., the monotone convergence theorem for sequence

{−mUl
} implies that:

EmUl
(X )→ Emθ(X ) (which may be −∞).

which shows that EmUl
(X )→ Emθ(X ) < Emθ0(X ) ∀ (θ /∈ Θ0) since

θ0 maximizes Emθ(X ).

Then there exists an open ball Uk who covers θ such that

EmUk
(X ) < Emθ0(X ), ∀ θ /∈ Θ0, ∃ k ∈ N. (15)

Let Uθ be the open ball containing θ, then B can be covered by
{Uθ : θ ∈ B} by the compactness of K . Let Uθ1 , · · · ,Uθp be the finite
subcovers, then we have by LLN:

sup
θ∈B

Pnmθ ≤ sup
θ∈Uθj

j=1,··· ,p

Pnmθ
a.s.−−→ sup

θ∈Uθj

j=1,··· ,p

Emθ(X ) < Emθ0(X ) (16)

where the = is by covering and the last < is from (15).
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On the other hand, by the covering and by the assumption of nearly
maximization on compact set, the event {θ̂n ∈ B} implies the event

sup
θ∈B

Pnmθ ≥ Pnmθ̂n
≥ Pnmθ0 − oP(1) = Emθ0(X )− oP(1)

where the = is by LNN applying to Pnmθ0 .

Hence, we have {θ̂n ∈ B} ⊂ {supθ∈B Pnmθ ≥ Emθ0(X )− oP(1)}
which leads to

P{θ̂n ∈ B} ≤ P
{
sup
θ∈B

Pnmθ ≥ Emθ0(X )− oP(1)

}
→ 0.

the last limit stems from supθ∈B Pnmθ < Emθ0(X ) a.s. in (16).
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Example: Cauchy MLE

Example 8.10 (Cauchy likelihood)

The pdf of Cauchy distribution Cauchy(θ) is

fθ(x) =
1

π {1 + (x − θ)2)
.

The MLE for location θ based on the sample X1, . . . ,Xn
i.i.d.∼ Cauchy(θ)

maximizes the log-likelihood function θ 7→ Pnmθ:

mθ(x) = − log
(
1 + (x − θ)2

)
.

The parameter space R is not compact, but we can enlarge the R to

R := R ∪ {±∞}.

i.e. the R is the compactification of R.
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Analysis via Wald’s consistency Conditions

1 U.S.C. condition: The mθ(x) is continuous (also u.s.c.).

2 Uniformly bounded on small-balls:

E sup
θ∈U

mθ(X ) =

∫
sup
θ∈U

− log{1 + (x − θ)2}
π{1 + (x − θ)2}

dx <∞.

m−∞(x) = lim sup
θ 7→−∞

mθ(x) = −∞; m∞(x) = lim sup
θ 7→∞

mθ(x) = −∞

3 Nearly maximization on compact set:

argmax
θ∈Θ

Mn(θ) := Mn(θ̂n) ≥ Mn (θ0)− oP(1)

Then, we apply Wald’s theorem with Θ = R equipped with the metric

d (θ1, θ2) = |arctg θ1 − arctg θ2| .

Θ0 = {θ0}.
Thus, taking K = R, we obtain that d(θ̂n,Θ0)

P→ 0.
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Asymptotic Normality of Z -estimator

Suppose

Measurability. For each θ in an open subset of Euclidean space, let
x 7→ ψθ(x) be a measurable vector-valued function.

Lipschitz condition. For every θ1 and θ2 in a neighborhood of θ0
and a measurable function ψ̇(x) with P[ψ̇(X )]2 <∞, we have

∥ψθ1(x)− ψθ2(x)∥ ≤ ψ̇(x) ∥θ1 − θ2∥ .

Moment and differentiability conditions. Assume that
P ∥ψθ0∥

2 <∞ and that the map θ 7→ Pψθ is differentiable at a zero
θ0, with nonsingular derivative matrix Vθ0 :=

∂
∂θP[ψθ(X )]

∣∣
θ=θ0

.

Consistency. Pnψθ̂n
= oP

(
n−1/2

)
and θ̂n

P→ θ0.

then

√
n(θ̂n−θ0) = −V−1

θ0

1√
n

n∑
i=1

ψθ0 (Xi )+oP(1)
d−→ N(0,V−1

θ0
Pψθ0ψ

T
θ0(V

−1
θ0

)T ).
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Asymptotic Normality of M-estimator

Suppose

Measurability. For each θ in an open subset of Euclidean space, let
x 7→ mθ(x) be a measurable function such that θ 7→ mθ(x) is differentiable
at θ0 for P-almost every x with derivative ṁθ0(x).

Lipschitz condition. For every θ1 and θ2 in a neighborhood of θ0 and a
measurable function ψ̇(x) with P[ṁ(X )]2 <∞, we have

|mθ1(x)−mθ2(x)| ≤ ṁ(x) ∥θ1 − θ2∥ .

Moment and differentiability conditions. Assume that the map θ 7→ Pmθ

admits a second-order Taylor expansion

Pmθ = Pmθ0 + (θ − θ0)T Vθ0 (θ − θ0) /2 + o(∥θ − θ0∥2).
at a point of maximum θ0 with nonsingular symmetric second derivative

matrix Vθ0 =
∂2

∂θ2P[mθ(X )]
∣∣∣
θ=θ0

.

Consistency. Pnmθ̂n
≥ supθ Pnmθ − oP

(
n−1
)
and θ̂n

P→ θ0. Then

√
n(θ̂n − θ0) = −V−1

θ0
1√
n

∑n
i=1 ṁθ0 (Xi ) + oP(1)

d−→ N(0,V−1
θ0

Pṁθ0ṁ
T
θ0
V−1
θ0

).

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics August 12, 2023 50 / 95



Asymptotic Normality of M- and Z -estimator

To prove AN of M- and Z -estimator, the Empirical Process is
indispensable. It will be taught detailly in the next half-semester.

Formal Settings

Let X1, . . . ,Xn be a random sample from a P on a measurable space

(X ,A).
We denote the empirical distribution by

Pn = n−1
∑n

i=1 δXi

as a discrete uniform measure, where δx is the probability distribution
that is degenerate at x .

Given a measurable function f : X 7→ R, we write Pnf for the
expectation of f under the empirical measure Pn, and Pf for the
expectation under P. Thus

Pnf = 1
n

∑n
i=1 f (Xi ) , Pf =

∫
fdP.

Actually, we treat Pn,P as operators rather than the measure.
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Asymptotic Normality of Z -estimator

In the heuristic proof for the AN of Z-estimator, we used ψ̈n(θ̃n) = Op(1). A
more vigorous proof is created via the so-called Donsker Class.

Let Gnf =
√
n(Pnf − Pf ) =

√
n( 1n

∑n
i=1 f (Xi )− Ef (x))

A class F = {f : X → Rmeasurable} istb Donsker if ∀f ∈ F , Gnf
d→ a tight

process in ℓ∞(F) where ℓ∞(F) be the set of bounded functions on F .
Tight here means ”∀ε > 0 ∃ a compact set K s.t. P(x ̸∈ K ) < ε”

Example: (parametric class of liptchitz, vdv Ex 19.7)

Let F = {fθ : θ ∈ Θ} be a collection of measurable functions indexed by a
bounded subset Θ ⊂ Rd . If there exists a measurable function m(x) such that
fθ(x) is m(x)-Lipschitz w.r.t. Euclidean norm

|fθ1(x)− fθ2(x)| ≤ m(x) ∥θ1 − θ2∥ , ∀ θ1, θ2.

It can be shown that if P|m|r <∞ for some r > 0, the class of functions F is
P-Donsker.
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A Lemma for Random function

Lemma 8.11 (Lemma 19.24 in vdv.)

Suppose that :

(a) F is a P-Donsker class of measurable functions.

(b) {f̂n} be a set of random functions that take their values in F such
that ∫

(f̂n(x)− f0(x))
2dP(x) = P(f̂n − f0)

2 p→ 0

for some f0 ∈ L2(P), i.e. Pf
2
0 <∞. Then

Gn(f̂n − f0)
P→ 0 and hence Gn f̂n ; GP f0.
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A Lemma for Random function

Remark 7

In Lemma 19.24 in vdv, We’ll set f̂n := ψθ̂n
, f0 := ψθ0 , then

P(ψθ̂n
− ψθ0)

2 ≤ P(ψ̇)∥θ̂n − θ0∥2
P→ 0

as θ̂n
P→ θ0, P(ψ̇)

2 <∞ and P(ψ̈)2 <∞ as assumed in the condition
of Z-estimator AN.
Thus, as F = {fθ : θ ∈ Θ} is P-Donsker, we have

Gn(f̂n − f0) =
√
n(Pn f̂n − Pf̂n)−

√
n(Pnf0 − Pf0)

P→ 0

⇒
√
n(Pn f̂n − Pf̂n) =

√
n(Pnf0 − Pf0) + op(1)
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Proof of AN of Z -estimator:

From the lemma and the last of the Remark,

Gnψθ̂n
−Gnψθ0 = Gn(ψθ̂n

− ψθ0)
P→ 0. (17)

Note Gnψθ̂n
=
√
n(Pnψθ̂n

− Pψθ̂n
) and Fψθ0 = Pψθ0 = 0, which is natural

as Pnψθ̂n
= op(n

1/2),

Gnψθ̂n
=
√
n(Pnψθ0 − Pψθ̂n

) + op(1). (18)

(17) and (18) ⇒

Gnψθ0 = Gnψθ̂n
+ oP(1) =

√
n(Pψθ0 − Pnψθ̂n

) + oP(1)

By Taylor Exp,

1√
n

∑
ψθ0(Xi )+op(1) = −

√
n
∂

∂θ
Pψθ(X )

∣∣∣∣
θ=θ0

(θ̂n−θ0)+
√
noP(∥θ̂n−θ0∥)

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics August 12, 2023 55 / 95



Proof of AN of Z -estimator:

Thus,

√
nVθ0(θ̂n − θ0) = −Gnψθ0 +

√
noP(∥θ̂n − θ0∥) (19)

and
√
n∥Vθ0(θ̂n − θ0)∥ = OP(1). Note√

n∥θ̂n − θ0∥ ≤ ∥V−1
θ0
∥
√
n∥Vθ0(θ̂n − θ0)∥ = OP(1) + oP(

√
n∥θ̂n − θ0∥).

So,
√
n∥θ̂n − θ0∥ = Op(1) and ∥θ̂n − θ0∥ = Op(n

−1/2)
from (19),

√
n(θ̂n − θ0) = −V−1

θ0

1√
n

n∑
i=1

ψθ0 (Xi ) + oP(1).
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Median: Example 5.24 in vdv’s book

The sample median maximizes the criterion function
θ 7→ −

∑n
i=1 |Xi − θ|.

Assume that the distribution function F (x) of the observations

X1, ...,Xn
iid∼ F is differentiable at its median θ0 = F−1(1/2) with

positive derivative f (θ0).

It follows from Theorem 5.23 applied with centralized M function
mθ(x) = |x − θ| − |x |. As a consequence of the triangle inequality,
this function satisfies the Lipschitz condition with ṁ(x) ≡ 1:

|mθ1(x)−mθ2(x)| ≤ ṁ(x)|θ1 − θ2|

due to max{|a| − |b|, |b| − |a|| ≤ |a− b|}.
Furthermore, the map θ 7→ mθ(x) is differentiable at θ0 except
x = θ0, with ṁθ0(x) = − sign (x − θ0). So

E (ṁθ0(X ))2 = E
(
sgn2 (x − θ0)

)
= 1.
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Median

By partial integration,

Pmθ = E (mθ(X )) =

∫
|x − θ|dF (x)−

∫
|x |dF (x)

= θF (0) +

∫
(0,θ]

(θ − 2x)dF (x)− θ(1− F (θ)) = 2

∫ θ

0
F (x)dx − θ.

If F (x) is sufficiently regular around θ0, then Pmθ is twice
differentiable

dPmθ
dθ = 2F (θ)− 1, d

2Pmθ

dθ2
= 2f (θ).

More generally, under the minimal condition that F (x) is
differentiable at θ0,

Pmθ = Pmθ0 +
1
2 (θ − θ0)

2 2f (θ0) + o(|θ − θ0|2).
Since V−1

θ0
P[ṁθ0ṁ

T
θ0
]V−1

θ0
= 1/ (2f (θ0))

2, then
√
n(θ̂n−θ0) = −V−1

θ0
1√
n

∑n
i=1 ṁθ0 (Xi )+oP(1)

d−→ N(0, 1/ (2f (θ0))
2).
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Nonlinear least squares: Example 5.27 in vdv’s book

Suppose that we observe a random sample (X1,Y1), . . . , (Xn,Yn)
consisting of the ”covariates” X and ”response variables” Y , follows

Y = fθ0(X ) + e, E(e|X ) = 0 Var (e|X ) = σ2 (X ) <∞.

The least squares estimator that minimizes

θ 7→
∑n

i=1 (Yi − fθ (Xi ))
2

is an M-estimator for mθ(x , y) = − (y − fθ(x))
2.

It should be expected to converge to the minimizer of the limit
criterion function

θ 7→ Pmθ = E (Y − fθ (X ))2 = E[Y − fθ0 (X ) + (fθ0 (X )− fθ (X ))]2

= E (fθ0 − fθ)
2 + Ee2. (20)

Thus the LS estimator should be consistent if θ0 is identifiable from
the model, in the sense that θ ̸= θ0 implies that

P(fθ(X ) ̸= fθ0(X )) > 0.
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Nonlinear least squares

Note that

|mθ1(x , y)−mθ2(x , y)| =
∣∣∣(y − fθ1(x))

2 − (y − fθ2(x))
2
∣∣∣

= |fθ1(x)− fθ2(x)| |2y − fθ1(x)− fθ2(x)|

We may assume that

|fθ1(x)− fθ2(x)| ≤ ḟ (x) ∥θ2 − θ1∥
and ∃ c(x) s.t. fθ(x) ≤ c(x), ∀θ ∈ Θ.

Thus

|mθ1(x , y)−mθ2(x , y)| ≤ |fθ1(x)− fθ2(x)| (2|y |+ 2c(x))

i.e. ṁ(x , y) := ḟ (x)[2|y |+ 2c(x)].

Assume that fθ(x) is continuous differentiable at θ0, we check the
map θ 7→ Pmθ admits a second-order Taylor expansion
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Nonlinear least squares

By (20), we have

Pmθ = E (Y − fθ (X ))2 + Ee2 = Pmθ0 +

∫
[fθ(x)− fθ0(x)]

2p(x)dx

= Pmθ0 +

∫
[(θ − θ0)T ḟθ0(x) + o(∥θ − θ0∥)]

2
p(x)dx

= Pmθ0 +
1

2
(θ − θ0)T2

∫
ḟθ0(x)ḟ

T
θ0 (x)p(x)dx (θ − θ0) + o(∥θ − θ0∥).

So Vθ0 = 2
∫
ḟθ0(x)ḟ

T
θ0
(x)p(x)dx = 2P[ḟθ0 ]ḟ

T
θ0

and

ṁθ0(x , y) = −2 (y − fθ0(x)) ḟθ0(x) = −2eḟθ0(x). If other conditions in
Thm 5.23 in vdv are fulfilled, we have

√
n(θ̂n−θ0) =

−V−1
θ0√
n

∑n
i=1 ṁθ0 (Xi ,Yi )+oP(1)

d−→ N(0,V−1
θ0

Pṁθ0ṁ
T
θ0
V−1
θ0

).

where (since e and X are independent)

V−1
θ0

Pṁθ0ṁ
T
θ0
V−1
θ0

= [2Pḟθ0 ḟ
T
θ0
]−14Pe2P[ḟθ0 ḟ

T
θ0
][2Pḟθ0 ḟ

T
θ0
]−1 =

2[2Pḟθ0 ḟ
T
θ0
]−1σ2 (X ).
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Examples: Binary regression (GLMs, vdv’s book Ex. 5.11)

Suppose that we observe a random sample (X1,Y1), . . . , (Xn,Yn)
consisting of k-dimensional vectors of ”covariates” X ; , and 0-1
”response variables” Y following

Pθ (Yi = 1|Xi = x) = Ψ
(
θT x

)
.

Here Ψ : R 7→ [0, 1] is a known continuously differentiable, monotone
function. The choices Ψ(t) = 1/ (1 + e−t) (the logistic distribution
function) and Ψ = Φ (the normal distribution function) correspond to
the logistic regression and probit model, respectively. The MLE
maximizes the (conditional) likelihood function

θ 7→
∏n

i=1 pθ (Yi |Xi ) :=
∏n

i=1Ψ
(
θTXi

)Yi
(
1−Ψ

(
θTXi

))1−Yi .

For identifiability of θ, we must assume that the distribution of the Xi

is not concentrated on a (k − 1)-dimensional affine subspace of Rk .
For simplicity, we assume that the range of Xi is bounded and the
non-singularity of the matrix EXXT .
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Examples: Binary regression (AN)

The consistency of θ̂n can be proved by combining Theorem
6.6 (Consistency of Z-Estimator).

The asymptotic normality of
√
n(θ̂n − θ) is now a consequence of

Theorem 6.14 (AN of Z-estimator). The score function (Z-function)

ψθ (x) := ℓ̇θ(y |x) =
y −Ψ

(
θT x

)
Ψ(θT x) [1−Ψ(θT x)]

Ψ′(θT x)x

is uniformly bounded in x , y and θ ranging over compacta, and
continuous in θ for every x , y .

The Fisher information matrix is

Iθ = E
Ψ′ (θTX)2

Ψ(θTX ) [1−Ψ(θTX )]
XXT

Asymptotic distribution for θ̂n is given by
√
n(θ̂n − θ)

d
⇝ N

(
0, I−1

θ

)
.
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Estimated Parameter

X1, · · · ,Xn
i .i .d∼ F(θ,η)

θ is the parameter of interest and η is the nuiance paramater.

Often we plug-in an estimator of η, say η̂n in the Z-estimating
equation,

Pnψ(θ,η) ⇒ Pnψ(θ,η̂n) =
1

n

n∑
i=1

ψ(θ,η̂n)(xi ) = 0

This is essentially a 2-step procedure.
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Motivating Example

yi = mθ0(xi ) + ϵi , E (ϵi |xi ) = 0

yi subject to missingness, and

Ri =

{
1, if yi observed,

0, if yi missing.

MAR(Missing at Random assumption)

P(Ri = 1|xi , yi ) = P(Ri = 1|xi ) = ωη0(xi )

ωη0(·) istb to missing propensity function. Here is a binary regression
model.

MAR ⇒ Given xi , Ri and yi are independent.

the so-called ignorable missing at random

”ignorable”: the missing Yi is ignorable as long as we have Xi
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How to estimate θ?

Method 1: Do LSE on data with Ri = 1.

LSn(θ) =
n∑

i=1

Ri (y1 −mθ(xi ))
2

∂LSn(θ)

∂θ
= −2

n∑
i=1

Ri (y1 −mθ(xi ))
∂mθ(xi )

∂θ
(21)

At θ0, by assuming E (ϵi |xi ) = 0,

E

{
Ri (yi −mθ0(xi ))

∂mθ0(xi )

∂θ

}
= E

{
ϵi
∂mθ0(xi )

∂θ
ωη0(xi )

}
MAR
= 0

So, the LS estimate that solves (21) is consistent and AN under centain
regular conditions.
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How to estimate θ?

Method 2: Inverse Prob Weighted Estimation. (weight (21) by ωη0(xi ))

n∑
i=1

Ri (yi −mθ(xi ))
∂mθ(xi )

∂xi

ωη0(xi )
= 0 (22)

E

{
n∑

i=1

Ri (yi −mθ(xi ))
∂mθ(xi )

∂xi

ωη0(xi )

}
= E

{
ϵi
∂mθ0(xi )

∂θ

}
= 0

For the estimator from (21) that ignore missing values and IPW estimator
from (22) , which one is more efficient?
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How to estimate θ?

However, η0 is unknown, which can be estimated by the binary likelihood,

Ln(η) =
n∏

i=1

ωRi
η (xi )(1− ωη(xi ))

Ri

ln(η) =
n∑

i=1

{Ri logωη(xi ) + (1− Ri ) log(1− ωη(xi ))}

∂ln(η)

∂η
=

n∑
i=1

{
Ri

ωη(xi )
− 1− Ri

1− ωη(xi )

}
∂ωη(xi )

∂η

set
= 0⇒ η̂

The (22) becomes
n∑

i=1

Ri (yi −mθ(xi ))
mθ
∂θ

ωη̂(xi )
= 0 (23)

Chen, Leung and Qin(2008) showed the estimation for θ based on (23)
which estimated η̂ is more efficient than that using the true η0 in (22).
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Motivation Example

The parametric assumption of P(Ri = 1|xi ) = ωη0(x0) may be too strong.
May consider a nonparametric form

P(Ri = 1|xi , yi ) = P(Ri = 1|xi ) = ω(x0)

The missing propensity ω(·) can be estimated via the kernel smoothing
method

ω̂h(x) =

∑n
i=1 K ( x−xi

h )Ri∑n
i=1 K ( x−xi

h )

where K is a kernel, symmetric pdf, h is a smoothing bandwidth, h→ 0,
nh→ 0, as n→∞.

E (ω̂n(x)) = E (
n∑

i=1

E (
K ( x−xi

h )∑
K ( x−xi

h )
Ri |x1, · · · , xn)

= E (
n∑

i=1

K ( x−xi
h )∑

K ( x−xi
h )

ω(xi )) (a weighted average of {ω(xi )}n)

can show
√
nhd(ω̂n(x)− ωn(x))→ K (µ, v2) (x ∈ Rd) if h ≈ O(n−

1
4+d ).
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Estimated Parameter

Ex 5.32 (Symmetric Location)

X1, · · · ,Xn
i .i .d∼ F which is symmetric about θ0. Let x → ψ(x) be

antisymmetric (odd function). Consider Z-estimator via 1
n

∑
i ψ(

xi−θ0
σ̂ ), σ̂

is an estimator of σ.

Pψθ0,σ̂ =

∫
ψ(

x0 − θ0
σ̂

)dF (x) = 0, ∀ σ̂,

since F (·) is symmetric about θ0 and ψ(·) is an odd function.
Hence, from Th 5.31 ,

√
n(θ̂n − θ0) = −V−1

θ0,η0

1√
n
(Pnψθ0,η0 − Pψθ0,η0) + op(1)

The estimation is effectively using the true η0 as the effect of σ̂ is not
present in the leading order.
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Chapter 9: U-Statistics

Suppose X1, · · · ,Xn i.i.d. P ∈ P, and h : Rm → R measurable for a finite
positive integer m < n, i.e. h(x1, · · · , xm) = h(xi1 , · · · , xim) where
(i1, · · · , im) is an arbitrary permutation of 1, · · · ,m. If not, one can always
define and replace by the symmetry:

1

m!

∑
all permutation of (i1,··· ,im) of (1,··· ,m)

h(xi1 , · · · , xim)

Let θ = Eh(X1, · · · ,Xm) if |Eh(X1, · · · ,Xm)| <∞.

Definition 9.1

Un :=

(
n
m

)−1∑
ℓ

h(xi1 , · · · , xim) is called a U-Statistics with kernel h of

order m, where
∑

ℓ denotes the summation over the ( n
m ) candidates of

m-distinct elements {i1, · · · , im} from {1, · · · ,m}.
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Examples

n−1
∑

xi is a U-Statistic with kernel h(x) = x of order 1.

n−1
∑

xki is a U-Statistic with kernel h(x) = xk of order 1.

( n
m )−1∑

ℓ xi1 · · · xim is a U-Statistic with kernel:

h(x1, · · · , xm) =
m∏
i=1

xi

of order m.

2

n(n − 1)

∑
1≤i<j≤n

(xi − xj)
2

2
=

1

n − 1

(
n∑

i=1

x2i − nx̄2

)

is a U-statistic of order 2 with h(x1, x2) =
(x1−x2)2

2 .
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Variance of U-Statistic

Assume Eh2(x1, · · · , xm) <∞. For k ∈ {1, · · · ,m}, let:

hk(x1, · · · , xk) = E [h(X1, · · · ,Xm) |X1 = x1, · · · ,Xk = xk ]

= Eh(x1, · · · , xk ,Xk+1, · · · ,Xm)
(24)

Clearly, we have hm = h, hk(x1, · · · , xk) = Ehk+1(x1, · · · , xk ,Xk+1), and:

Ehk(X1, · · · ,Xk) = Eh(X1, · · · ,Xm) = θ

Define h̃k(x1, · · · , xk) = hk(x1, · · · , xk)− θ, then:

Un − EUn =

(
n
m

)−1∑
ℓ

h̃(Xi1 , · · · ,Xim) (25)
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Hoeffding’s Theorem

Theorem 9.2

Let X1, · · · ,Xn i.i.d. P ∈ P with EPh
2(X1, · · · ,Xm) <∞, then:

varP(Un) =

(
n
m

)−1 m∑
k=1

(
m
k

)(
n −m
m − k

)
ξk (26)

where ξk = varP(hk(X1, · · · ,Xk)) satisfying:

(i)
m2

n
ξ1 ≤ varP(Un) ≤

m

n
ξm.

(ii) (n + 1) varP(Un+1) ≤ n varP(Un).

(iii) varP(Un) =
k! (mk )

2 ξk
nk

+ O
(
n−(k+1)

)
as n→∞, if ξk ̸= 0 but

ξj = 0 for j < k.

See Shao section 3.2.
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Proof

Let {i1, · · · , im} and {j1, · · · , jm} be two sets of m-distinct intergers from

{1, · · · , n} s.t. {i1, · · · , im} ∩ {j1, · · · , jm}
WLOG
= {1, · · · , k}, then

Eph̃(x1, · · · , xk , xik+1, · · · , xim)h̃(x1, · · · , xk , xjk+1, · · · , xjm)
=Ep{Eph̃(x1, · · · , xk , xik+1, · · · , xim)h̃(x1, · · · , xk , xjk+1, · · · , xjm)|x1, · · · , xk ,

xjk+1, · · · , xjm}
=Eph̃(x1, · · · , xk , xjk+1h̃k(x1, · · · , xk)
=Eph̃k(x1, · · · , xk)EP(Eph̃(x1, · · · , xk , xjk+1|x1, · · · , xk))
=Eph̃

2
k(x1, · · · , xk)

=Varphk(x1, · · · , xk) = ξk (27)
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Proof

Varp(Un) = Ep(Un − E (Un))
2

=

(
n
m

)−2∑
c

∑
c

Eph̃(x1, · · · , xim)h̃(x1, · · · , xjm)

(27)
=

(
n
m

)−2 m∑
k=1

∑
#of{i1,··· ,im}∩{j1,··· ,jm}=k

Eph̃(x1, · · · , xim)h̃(x1, · · · , xjm)

=

(
n
m

)−2 m∑
k=1

(
n
m

)(
m
k

)(
n −m
m − k

)
ξk

→ (26)
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Proof

(i) and (ii) can be derived from (26) and the fact that

0 = ξ0 ≤ ξ1 ≤ ξ2 ≤ · · · ,≤ ξm = Varp(h)

where ξk ≤ ξk+1 for k = 1, · · · ,m − 1 are implied by Jensen’s
inequality for conditional expectation.

To appreciate (iii), note from (26) that(
n
m

)−1 m∑
k=1

(
m
k

)(
n −m
m − k

)
ξk

=ξk

(
m!

k!(m − k)!

)
k! {(n −m)!}2

n!(n − 2m + k)!

=ξk

(
m
k

)2

k!
(n −m) · · · (n − 2m + k + 1)

n(n − 1) · · · (n −m + 1)

where the last factor is of the order O( 1
nk
).
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Proof

For other terms in (26), as(
n
m

)−1(
m
j

)(
n −m
m − j

)
=

{(
m
j

)}2

j!
{(n −m)!}2

n!(n − 2m + j)!

=

{(
m
j

)}2

j!
(n −m) · · · (n − 2m + j + 1)

n(n − 1) · · · (n −m + 1)

∼ 1

n!
= O(

1

nk+1
) for j ≥ k + 1

Var(Un) =

k!

(
m
k

)2

ξk

nk
+ O(

1

nk+1
)

The leading order of Var(Un) is
1
nk

where k is the first ξk ̸= 0, which
determines the rate of convergence of Un − E (Un) to 0, as shown in
the next theorem.

See Shao §3.2 for examples.
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Asymptotic Normality of U-Statistics

U-Statistic is NOT a sum of independent r.vs even X1, · · · ,Xn are
independent when m > 1, which prevents the use of CLTs for
independent r.vs directly.

The idea now is to find a projection of Un on X1, · · · ,Xn respectively,
by taking E(Un|Xi ), i = 1, · · · , n. Let
Ũn = EUn +

∑n
i=1 {E(Un|Xi )− EUn} which is i.i.d (or independent)

which admit CLT. So If we can show Un − Ũn is negligible, then we
can use Slutsky to establish AN of Un.
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Asymptotic Normality of U-Statistics

Definition 9.3

Let Un be a U-statistic based on sample {X1, · · · ,Xn}. The projection of Un on
{x1, · · · , xn} is:

Ũn = EUn +
n∑

i=1

{E(Un|Xi )− EUn} := θ +
n∑

i=1

{φn(Xi )− θ} (28)

where φn(Xi ) = E(Un|Xi ).

If {Xi} are i.i.d. (or independent), then {φn(Xi )} are i.i.d. (or independent) too.

Clearly, EŨn = EUn = θ (= θn if h = hn).

Lemma 9.4

Let Un be a U-Statistic with var(Un) <∞ for each n. Then:

E(Un − Ũn)
2 = var(Un − Ũn) = var(Un)− var(Ũn)

The proof is based on cov(Un, Ũn) = var(Ũn) which is given in Shao p179.
Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics August 12, 2023 80 / 95



Asymptotic Normality of U-Statistics

Theorem 9.5

Let Un be a U-Statistic given in Def 9.3 based on i.i.d. {Xi}ni=1 with
Eh2(X1, · · · ,Xm) <∞.

(i) If ξ1 = var(h̃1(X )) > 0, then:

√
n (Un − EUn)

d.−−→ N(0,m2ξ1)

(ii) If ξ1 = 0 but ξ2 > 0, then:

n (Un − EUn)
d.−−→ m(m − 1)

2

∞∑
j=1

λj
(
χ2
1,j − 1

)
where {χ2

1,j}j≥1 are i.i.d. χ2
1 r.vs and λj are constant satisfying∑∞

i=1 λ
2
j = ξ2.
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Proof

(i) only. See Serfling (1980) for (ii). Consider:

E(Un|X1) = E

(
n
m

)−1∑
ℓ

E (h(Xi1 , · · · ,Xim)|X1)

=

(
n
m

)−1{∑
ℓ1

E (h(Xi1 , · · · ,Xim)|X1) +
∑
ℓ2

θ

}
where ℓ1 is all the combinations of (i1, · · · , im) which contains 1 and ℓ2 is other
combinations of (i1, · · · , im) which does not contain 1. It is easy to check:

|c1| =
(

n − 1
m − 1

)
, |c2| =

(
n − 1
m

)
Hence,

E(Un|X1) =
m!(n −m)!

n!

[
(n − 1)!

(m − 1)!(n −m)!
h1(X1) +

(n − 1)!

m!(n −m − 1)!
θ

]
=

m

n
h1(X1) +

n −m

n
θ
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Proof

Subsequently,

Ũn = θ +
n∑

i=1

{
m

n
h1(Xi ) +

n −m

n
θ − θ

}

= θ +
m

n

n∑
i=1

{h1(Xi )− θ} = θ +
m

n

n∑
i=1

h̃1(Xi )

From the CLT for i.i.d. r.vs, as Eh̃21(X1) <∞, which means:

√
n
(
Ũn − θ

)
d .−−→ N(0,m2ξ1)

if ξ1 > 0 since var(Ũn) = m2ξ1/n.
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Proof

On the other hand, by Lemma 9.4,

E(Un − Ũn)
2 = var(Un)− var(Ũn)

Thm 9.2(iii)
=========

m2ξ1
n
− m2ξ1

n
+ O(n−2) = O(n−2)

Hence,

P
(√

n|Un − Ũn| > ϵ
)
≤ nE(Un − Ũn)

2

ϵ2
= O(n−1)→ 0

i.e.
√
n(Un − Ũn) = op(1). AS a result,

√
n(Un − θ) =

√
n(Ũn − θ) +

√
n(Un − Ũn)

=
√
n(Ũn − θ) + op(1)

d .−−→ N(0,m2ξ1)
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Example

Suppose X1, · · · ,Xn i.i.d. P with EPXi = µ and varP(Xi ) = σ2 > 0. Let:

Un =

(
n
2

)−1 ∑
1≤i1<i2≤n

Xi1Xi2

i.e. h(x1, x2) = x1x2, θ = EUn = Eh(X1,X2) = µ2. Then,

h1(x) = E {h(X1,X2)|X1 = x} = E {X1X2|X1 = x} = xµ

h̃1(x) = xµ− µ2 = (x − µ)µ

and ξ1 = var(h̃1(X )) = Eh̃21(X ) = µ2σ2 = 0 iff µ = 0.

Furthermore, since h̃2(x1, x2) = h̃(x1, x2) = x1x2 − µ2,

ξ2 = E
(
(X1X2 − µ2)

)2
= var(X1X2) = var (E(X1X2|X1)) + E var(X1X2|X1)

= var(X1µ) + E(X 2
1 σ

2) = σ2µ2 + σ2(σ2 + µ2) = σ2(σ2 + 2µ2) > 0
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Example

If µ ̸= 0, from the non-degenerated version of CLT,

√
n(Un − µ2)

d.−−→ N(0, 4ξ1)
d.
=== N(0, 4µ2σ2)

If µ = 0, since Un = 1
n(n−1)

∑
i1 ̸=i2

Xi1Xi2 , we have:

X̄ 2
n =

1

n2

n∑
i1,i2=1

Xi1Xi2 =
1

n2

[
n(n − 1)Un +

n∑
i=1

X 2
i

]

Note that
√
nX̄n

d.−−→ N(0, σ2), nX̄ 2
n /σ

2 d.−−→ χ2
1 and 1

n−1

∑
i=1 X

2
i

p.−−→ σ2, by
Slutsky Theorem,

nUn =
n

n − 1
nX̄ 2

n −
1

n − 1

n∑
i=1

X 2
i

d.−−→ σ2
(
χ2
1 − 1

)
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Extensions

Suppose X1, · · · ,Xn i.i.d. F with pdf f and kernel estimation of f with the kernel
K and bandwidth b:

f̂n(x) =
1

nbn

n∑
i=1

K

(
x − xi
bn

)
∧
===

1

n

n∑
i=1

Kbn (x − xi )

where Kbn(t) = 1
bn
K
(

t
bn

)
. Assume bn → 0 , nbn →∞ as n→∞.

Consider WT Test:

H0 : f = fθ where fθ be a parameter pdf .

θ̂n be a
√
n-consistent estimation of θ under H0, i.e. θ̂n − θ = Op(n

−1/2), for
instance the MLE.
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Extensions

A natural test statistic is

Tn =

∫ {
f̂n(x)− fθ̂n(x)

}2

dx

=

∫ {
f̂n(x)− E f̂n(x)

}2

dx +

∫ {
E f̂n(x)− fθ̂n(x)

}2

dx

+ 2

∫ {
f̂n(x)− E f̂n(x)

}{
E f̂n(x)− fθ̂n(x)

}
dx

=: Tn1 + Tn2 + Tn3

The last two terms Tn2 and Tn3 at most determines the asymptotic mean of Tn.
Let σ2

K :=
∫
u2K (u)du:

Tn1 =
1

n2

∑
i,j

∫
{Kbn(x − xi )− µn(x)} {Kbn(x − xj)− µn(x)} dx
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Extensions

where

µn(x) = EKbn(x − xi ) = f (x) +
1

2
b2nf

′′(x)σ2
K + · · ·

Hence,

Tn1 =
2

n(n − 1)

∑
i<j

∫
hn(xi , xj) +

1

n

n∑
i=1

∫
{Kbn(x − xi )− µn(x)}2 dx

=: Tn11 + Tn12

Tn12 contribute to the mean only.
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Extensions

where

hn(x1, x2) =
n − 1

n

∫
{Kbn(y − x1)− µn(y)} {Kbn(y − x2)− µn(y)} dy

hn be symmetric and depend on n.
Hence, we can consider the following question only:

Un :=

(
n
m

)−1∑
ℓ

hn(xi1 , · · · , xim) with IID {xi}ni=1
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Chapter 10: Empirical Process

Let X1, . . . ,Xn be a random independent sample from a distribution
function F (x), x ∈ R. The empirical distribution function (EDF) is

Fn(t) :=
1

n

n∑
i=1

1 {Xi ≤ t} .

which is a natural estimator for the unknown distribution F . Note that
nFn(t) is binomially distributed with mean nF (t), thus Fn(t) is unbiased.

Classical LLN or CLT for EDF

By the SLLN, Fn(t) is also consistent: Fn(t)
as→ F (t), ∀ t. .

The centered and scaled version of the empirical measure

Gnf :=
√
n (Pnf − Pf ) = 1√

n

∑n
i=1 (f (Xi )− Pf (Xi )) .

Let F be equal to the collection of all indicator functions of the form
ft = 1(−∞,t], with t ∈ R. By the CLT: Gnft ; N(0,F (t)(1− F (t))).
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Uniform LLN for EDF

The Glivenko-Cantelli theorem extends the LLN for EDF and gives uniform
convergence

∥Fn − F∥∞ = sup
t∈R
|Fn(t)− F (t)| as→ 0.

Motivation 1. Historically, empirical process theory has one of its
roots in the study of goodness-of-fit statistics.

[The first goodness-of-fit statistic is Pearson’s chi-square statistic. It is performed
by discretely binning a continuous distribution into a more tractable multinomial
distribution. However, the discretization in chi-square statistic leads to a loss in
statistical power. To remedy this problem, Kolmogorov introduced the statistics

Kn = sup
t∈R
|Fn(t)− F (t)|

to directly measure the maximum functional distance between Fn(t), F (t).]
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Uniform CLT for EDF

Kolmogorov distribution

The Kolmogorov distribution is the distribution of the random variable

K = sup
t∈[0,1]

|B(t)|

where B(t) is the Brownian bridge. The cumulative distribution function
of K is given by

Pr(K ≤ x) = 1− 2
∑∞

k=1(−1)k−1e−2k2x2 =
√
2π
x

∑∞
k=1 e

−(2k−1)2π2/(8x2)

Uniform CLT for EDF

Under null hypothesis that the sample comes from the distribution F (x)

√
nKn

n→∞−→ sup
t
|B(F (t))|.

Theory of Empirical Processes aims to establish the uniform convergence.
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Motivations of Empirical Process

Motivation 2. The uniform convergence condition in Consistency of
M- and Z -estimator is hard to check.

Theorem 10.1 (Consistency of M-estimator)

Let Mn be random functions and let M be a fixed function of θ such that for every
ε > 0, if we have conditions:

C1. Uniformly convergence: sup
θ∈Θ

|Mn(θ)−M(θ)| P→ 0;

C2. Well-separation; C3.The {θ̂n} satisfies nearly maximization condition. Then θ̂n
P→ θ.

Theorem 10.2 (Consistency of Z -Estimator)

Let Ψn be random vector-valued functions and let Ψ be a fixed vector- valued function
of θ such that for every ε > 0, if we have :
C1∗. Uniformly convergence: sup

θ∈Θ
∥Ψn(θ)−Ψ(θ)∥ → 0;

C2∗. Well-separation; C3∗.The {θ̂n} satisfies nearly zero condition. So, θ̂n
P→ θ.
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Motivations

Motivation 3. When controlling the non-independent summation of
a function of the random sample indexed by a common estimator θ̂.
It false to use any sort of classical LLN or CLT.

Given an estimator θ̂, we want to study its asymptotic properties for
summation some function fθ̂(Xi ),

1
n

∑n
i=1[fθ̂ (Xi )− Efθ0(Xi )], is the ”true” parameter.

A Possible Solution

Prove a uniform version (the suprema of empirical processes) for all
possible θ̂ on a set K , which is usually stronger than what is needed.

1

n

n∑
i=1

[fθ̂ (Xi )− Efθ0(Xi )] ≤ sup
θ0∈K

|1
n

n∑
i=1

[fθ0 (Xi )− Efθ0(Xi )]|.

Fortunately, the summation in the sup enjoy independence.
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