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Chapter 7: Maximum Likelihood Estimates(MLE)

Let X = {Xi,..., X} be iid with distribution Fy belonging to a family
F = {Fg 10 = (04, .. .,Qk)T € @} and suppose that the distribution Fy

posses densities fy(x). The likelihood function of the sample X is defined as
L(6:X) = [Tz fo (X))-

© The maximum likelihood estimate (MLE) is given by
6 = arg maxgee log L(6; X) .
Q@ Often, the MLE 8 may be obtained by solving a system of likelihood
score equations,

0log L(6; X)
90 0=6

© The variance of the score function is crucial for the AN of MLE.
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Fisher Information

Definition 7.1

Suppose that P = {Py, 6 € ©} is dominated by a o-finite . Say P is
Fisher-Information (FI) regular at 6 € ©, if there exists an open
neighborhood of 6, say ©y, s.t.

(i) fo(x) := d'Dg(X) > 0 for any x and 6 € ©y.
(i) Vx, fao(x) is dlfferentlable at 6.
(iii) [ fa(x)p(dx) can be differentiable under the integral at 6, i.e.

f %f@'(x) 9'=6 p(dx) = 0.

Definition 7.2

If a model P = {Py,0 € ©} is Fl regular, then

h(8) = By [ 2 log fi(x)
is called the Fl in X at 6.

2
0’:0]
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Maximum Likelihood Estimate

(i) By def. of Fl, we have Eq [ 53 log fy(X)|,,_,] =0, so:

9/—9)
d

y TH{ |Og f;g/(X)
— log fyr(x) = : e RK
do’ g
EA log for (x)
0’=9]

d
I,,(@):var(del log far(x)

(i) F©O CRK for K >1,0= (01, - ,0k), then:

and

I(6) = [d‘é o8 r(x) (7 o () )

is the FI matrix.
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Maximum Likelihood Estimate

If P is Fl regular at 6, and Vx, fy(x) is twice differentiable at 6, and
1= [ fy(x)u(dx) can be differentiable w.r.t. § under the integral, i.e.

[ 5500

p(dx) =0
6'=0

0’_0:|

d2
oo p(dx) =0, / do? for(x)

Then,
2

10) = ~En | 52 Vg ()

The proof is evident.
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C-R Lower Bound

Let (X, X,P = {Py,0 € ©}) be a p.s. of ar.v. X, where P < a o-finite
w, fo(x) = ‘L—'Zf. Suppose that:

(i) © C R is open.
(i) A = support of fy does not depend on ©.
(iii) V0 € ©, dfggx) exists.
(iv) Eg [ log fy(x)] = [ 280 1u(dx) = 0 for any 6 € ©.
(v) I(9)>0forany96@
(vi) g : © — R measurable and ( ) exists for any # € ©, and & : X — ©

is an unbiased estimator of g(G)

(vil) 5 [ 80 fa(x)n(dx) = [ 2(x) %502 u(dx)

fThen, ;/«?re(_é’(X)) > [g'(0)1%/1n(0) or varg(&(x)) = [g'(0)] "1, (0)[g’ (0)]
or multivariate case.
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C-R Lower Bound

(i) [g'(0)]?/1.(0) is the C-R Lower Bound for unbiased estimator of g(6).

(ii) Condition (iv) and (vii) are the most restrictive, they can be
established under a set of sufficient conditions.

Under the conditions (i)-(iii) in above slides , and if there exists a
G:Xx0 =R, st

(a) VO € ©, G(x,0) is X-measurable.
(b) EgG?(x,0) < oo for any 6 € ©.
(c) VO €©, Jeyg >0, s.t.

dfe/(x)
do’

< G(x,0)fy(x), Vx e Aand|d— 0] < ey.

then Condition (iv) is satisfied; and for all unbiased estimator of g(f), say
£(x), if Eg(8(x))? < oo, then Condition (vii) is valid as well.

v
T mid =

-
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(Use MVT & DCT):

Ve, |0—0|<e, 0 €0, as

| itnta) = [ frtonta =1

X
00— ()
ol X) — Tor(X
/X Wﬂ(dx) =0 (1)
From the MVT, Condition (iii), and Condition (c):
P |19 < G oyt ©)

for some @ between 6 and ¢'.
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Note that [, G(x,8)f(x)u(dx) = EgG(X,0) < Ey/2G3(X,6) < oo, by

et df, f f
/X Z(HX) p(dx) = /X Jim "(X; — 0 (v
) fo(x) — for(x)

which exactly is the Condition (iv).

On the other hand, suppose g(x) is an unbiased estimator of g(6)
satisfying Epg2(x) < oo, then:

B () g(6) -~ a()
| 260" =) = B8 ()
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From (2), V0,0, s.t. |0 — 0’| < €, we have:

(02—t

< [8(x)IG(x,0)f(x)

and:
/X 18(x)[G(x, 0)fy(x)p(dx) = Eg|&(x)|G(x, 0)

< [Eo82(x)Es G2(x,0)]? < o0

as Fyg?%(x) < oo and EyG?(x,0) < oo. Applying DCT on (3) by letting
6’ — 0, then we get Condition (vii).
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Bhattacharya Inequality: C-R Bound is too low.

Theorem 7.4

Suppose the Condition (i) and (ii) in Slide 6. Now, if we give more restrictions on
other conditions:

(iii)* 280 exists and [, 280 )(dx) =0, i=1,--- ,K, 0 € ©.
p 2
(W) f iy (2082) () < o0, i =1, , K, 6 € ©.

(v)* &(x) is an unbiased estimator of g(0) with finite variance, and for any
i=1,---,K, 0€80,

£90) = 7560) = [ 2% o

Then, varg (&(x)) > g7 (0)V=1(0)&(8), where V(0) = (V;(0)) with

Vi) = Bo | =T TR g0) = (0 &)
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Denote S = Sp(x) = (SSV(x), -+, S (x))T, where:

1 9'fy(x)
fo(x) 06

S(x) =

From Condition (iii)*, E¢S = 0, from Condition (iv)*, varg(S) = V(0), and from
Condition (v)*, covy (g(x),S(S (x )) ()(6), hence,

e () (87 58)
Since |A| > 0, and

Al = [V(9)] [vare(&(x)) — &7 (O)V1(0)&(0)]
which implies varg(g(x)) — & T(9)V~1(8)g(8) > 0.

Bhattacharya Inequality is an extension of C-R Inequality (K =1)! \
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Kullback-Leibler divergence

Kullback-Leibler divergence is a measure on the closeness between two
distributions Py and P,,.

Definition 7.5 (KL-divergence)

The Kullback-Leibler (KL) divergence of two probability measure from Py
to P,

Di1(P,||Py) = —E, log %(X), X~ P,
n

where pg, p, are the density functions of Py and P, respectively.

@ The K-L- divergence is not a true metric, as
Dki(P || Q) # Dki(Q || P) in general.

@ By concavity of the log, Dk (P || @) > 0 and = 0 iff P = Q if the
models are identifiable.
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|dentifiability

Suppose that we have an i.i.d. samples Xi,..., X, ~ X where X has
probability measure Py dominated by a underlying measure p with density

fo (x)-
Definition 7.6 (Identifiability)

A parametric famility (i.e. a class of prob. densities)
Po := {fy(x) : 6 € O} is identifiable if V01 # 62(01,6> € ©), we have

pu(x - Ay, (x) # fg,(x)) > 0

where p is the dominated measure (Lesbegue or counting measure).

o ldentifiable parametric famility means no other parameter gives the
same probability distribution.

o ldentifiability is a sufficient condition in the Consistency of MLE. If the
parameter is not identifiable, then consistent estimators cannot exist.
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Cramer’s Consistency Condition

Lemma 7.7 (Minimizing the K-L distance)

Let Pg := {fy(x) : 0 € O} be a identifiable parametric famility. If
Eg, log fg,(X) < oo, then M(0) := Eg, log[fy/fy,(X)], attains its maximum
uniquely at its true parameter 0y, i.e.

Eg, log fo(X) < Ep, log fp,(X) < 0.

For 6 € ©, since — log(t) is strictly convex, Jensenj s inequality shows
that
gy log 2 (X) < log 5, 12.(X) = 0.
foo foo
By identifiable condition, the equality holds iff 6 = 6. Thus the expected
log-likilihood is the largest at the true parameter 6g.
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Consistency of MLE

Theorem 7.8

Let Xy,---, X, i.i.d. Py, © C R and there exists an open neighborhood of
0, say Oy, s.t.

(i) A:= {x|fa(x) > 0} does not depend on 6.
(i) Vx € A, fo(x) is differentiable at every ' € ©y.
(i) Eq log fy:(X) exists for all all §' € ©, and is finite.
(iv) p(x|fy,(x) # fo,(x) for 01 # 62) > 0, i.e. P = {Pp} is identifiable.
Then, Ve >0, >0, 3m.s >0, s.t. n> m.; satisfying:

d n
Pg{the equation w ; Iog ﬁgl(X,’) = 0 has a root within (9 — €, 0+ 6)} >1-— )

v
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Some Remarks

(1) As X;j ~ Py, 0 is the true parameter. The log likelihood is:
Ca(0') = log fir (X)
i=1

(2) In (i) and (ii), we can require the properties are still true for any
x € X and 0’ € ©, which may be more convenience to verify.
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WLOG, we assume ¢ is small enough s.t. [0 —¢€,0 4 €] C ©y. Note WLLN & (iii):

fGie : Pg féie(x)
— — Egl = —Mpte < 0
Z ¢ 108 fg(X) Note <
SoVd>0,£>0 dm=mc;5 Vn>m,

? f€l
{ ZI "i +neie<£}zl

By choosing 0 < & < min{ng_c, o+ }, the above display implies for any n > m,
we have:

(o)

N

N

Py(A) : ( Zlogfa(x Zlogme ; ) >1-

1 1 5

Py(B) =Py | - ng fo(Xi) > — ng fo (X)) | 21— 3
i=1 i=1
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As P(AB) = P(A) — P(AB®) > P(A) —P(B¢) >1-5 -3 =1-4, we
have:

Po (£n(0 — €) < £,(0) and £,(0 + €) < £,(0)) >1—0
Since ¢,(¢') is differentiable,

Py (3 a local maximum of £,(6") on (6 —€,0 +¢€)) >1—§

which actually implies:

d
Pe{wén(ﬂ') = 0 has a root on (9—6,94-6)} >1-9

The root guaranteed by this Theorem is NOT necessary a MLE! \
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Consistency of MLE

Theorem 7.9

Under the conditions of theorem 7.8, define 9,, be the root of the

likelihood equation when there is exactly one root (otherwise adopt any
definition for 6,,). If

Ii_)m Py (the likelihood equation has a single root) =1 (4)
n—o0

then:
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For any € > 0 and 6 > 0, Theorem 7.8 implies 3m, s, s.t. ¥n > ms,

Pg(A) := Py (the LE has a root within (0§ —¢,0 +¢)) > 1— g

On the other hand, the extra condition in the Theorem implies 3 mg,
Vn> mj:

. )

Py(B) := Py(the LE has a single root) > 1 — 5

So as long as n > max{m, s, m§}, we have

Py (\én —9| < e) = Py(fnisin (0 —€,0+¢)) = Po(AB) >1-0

Remark 6

There is no guarantee that the LE essentially has a single root, i.e. (4),
this condition, however, has already an consistent estimator.

™ = —y = .
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Asymptotic Normality of MLE

Theorem 7.10

Let Xi,--- , X, i.i.d. Pg,, © C R, and there exists an open neighborhood of 0y, say ©,
s.t.

(i) for(x) >0 for all x and 6" € Og,.
(i) Vx, for(x) is 3-times diffferentiable at V0’ € Og,.
(iii) IM(x) > 0 with Eg,M(x) < oo and ‘ﬁi log fg/(x)‘ < M(x), ¥x, 0 € Op,.
(v) [ (X)‘G,ZQO =0 for I =1,2. ie. [ fu(x)u(dx) =1 can be differentiable
twice w.r.t. 6 under the integral at 6.

(v) V&,0 < h(8) < co where | is the Fl based on single observations Xi.
Let én is the MLE of 0. Furthermore, we require:

(vi) limy— o Po (é,, is a root of the LE) =1 and Eg| log fa (x)| < oo for any §' € ©.
(vii) 0, £ 0o and p{x|fa(x) = for(x), 0 # 0’} = 0. Then
V(0 — o) <= N(O, l;*(60))
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Let L,(0") = n=* >, log far(X;) and:
~ ~ 1 ~
0 = Li(6h) = L3(00) + L (80)(0n — o) + 5 L7 (61)(0n — bo)? ()

where ) is between 6, and 6. In writing (5), we note that Condition (vi) and
(vii) implies that: 3, m, V.n > m, 6, is bothe a root of the LE and an element of
@0, i.e.

lim Po (én is the root of the LE & 6, € eo) =1 (6)

n— oo

On the other hand, by the WLLN,

)
Ly (60) = Z d92logf9 % ~h(f) € (~00,0)

So,
L (60) = —h(o) + op,(1) (7)
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Besides,

(iii) 1
/I/ .
|L}( |ngg < - E M(X;)
=06, i=1
Po
——— Eg. M(X
win' % (X) <00

So {L}(61)} is tight, i.e. L)/ (61) = Op,(1).
Note that 6, - 6, as hypothesized, 0, — 6 = op,(1), hence,

(0 — 00)?L2 (1) = 0p, (B — b0). (8)
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From (5) - (8),
0 = L},(60) + (—h(6o) + 0p,(1)) (0n — 60) + 0p, (8 — o).
As,
VALl (60) = Z B N) ., w0, (o)
\/7 b )

V(0 ~ 00) = ~ 171 (80)V/nL(06) + op, (V/n(6n — 60))

= 171 (B0)v/nL}(60) + op, (1) 2> N(O, 171 (6o)).
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AN of MLE with compact and convex parameter space

Theorem 7.11 (Theorem 5.9 in Bijma&Jonker&Van der Vaart(2017))

Suppose that

@ The © is compact and convex and that 0 is identifiable, and let 0, be
the maximum likelihood estimator based on a sample of size n from
the distribution with (marginal) probability density py;

o Assume that the map ¥ — log py(x) is continuously differentiable for
all x, with derivative y(x) such that |(y(x)| < L(x) for every ¥ € ©,
where L is a function with EgL? (X1) < oo ;

e If 0 is an interior point of © and the function ¥ — () is continuous
and positive.

Then

V(B — 60) ~ N (0,171(6p)) .

Bijma, F., Jonker, M., & Van der Vaart, A. (2017). An introduction to mathematical statistics.
Amsterdam University Press. J\
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Chapter 8: M- and Z-Estimators

All of M- and Z-Estimators

We study the consistency and asymptotic normality of M-estimators
(proposed by Peter J. Huber) and Z-estimators . MLEs and ME are
treated as the special cases of M and Z-estimators, respectively.
@ Suppose that the parameter 6 (or "functional”) of interests attached
to the distribution of observations X, := (X1,..., X,) ~ fp(X).

Definition 8.1 (M-estimator)

The M-estimator is to find an estimator 8, := 0, (X1,...,X,) that
maximizes a random criterion function of the type

0 — Mp(0)

For example, M,(0) = £ 37 my (X;).

v

H

uber, P. J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical
Statistics, 73-101. L
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The Z-estimators

Often the maximizing value is sought by setting a derivative (or gradient)
equal to zero. So, the Z-estimators satisfies the estimating equations

Va(8) = > v (X) =0 ©)
i=1

Definition 8.2 (Z-estimator)

More generally, the Z-estimator is to find an estimator 6, that solves the
the estimating equations (9).

@ The M- and Z-Estimators does not require iid or independent
structure of the observations.

@ The minimization problem for function —M,(6) may be non-convex.

@ The Z-estimator is often numerically solved by (quasi-) Newton
methods, Gradient descent, Stochastic Gradient descent
(non-convex).
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Examples: parameter est. from dist. (Location)

Let Xi,..., X, ~ pg. Then the MLEs maximize the likelihood []}_; pg (Xi)
or equivalently the log-likelihood: M,(6) := %27:1 log pg (X;) .
Pseudo-MLE: X;'s may be dependent, the log-likelihood is still used.

Two examples of Location estimators

The sample mean and sample median which are Z-estimators solved by

1 n
= ; (Xi—6)=0;, and W,(0)= Z&gn —-60)=0

@ Quantile function for the distribution function F:
F~Y(p) :=inf{x €R: F(x) > p}

e Median: med(X) = F~1(0.5).
o Quantiles: 0y = argminEp, (x — ) = F~1(7), (HW).
0
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Examples: Quantiles

Define the check function: p-(y) = y(7 —I(,<g)) as the loss function.
Then the 7-sample quantile § can seen as the M- and Z-estimators.

Sample quantile

1 n
My (6) := — > pe(X; = 0); and
i=1

W, (6) = %Z (L= 7)L{X < 8} — 71X > 6}) = 0
i=1

For small sample size n, vdv's book gives an alternative def. of the
T-sample quantile: 6§ solves the inequalities :—1 < nW,(#) < 1.
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Examples: Huber estimators

The Huber estimators were motivated by studies in robust statistics
concerning the influence of extreme data points on the estimate.

Huber estimators
Corresponding to the Huber W functions

—k ifx < —k
Y) =X = q x  if x| <k
ko ifx>k

The Huber estimators solves the following estimating equations.

Va(0) = T3 (X~ 0) =0
i=1

The Huber estimators behave more like the mean (large k) or more like
the median (small k) and thus fill in the gap between the nonrobust mean
and very robust median.
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Two Pictures for Z-estimator of local parameter

o
[aV]
Jj o |
o ~—
o |
U")_
Oﬁ
o | < 1
4 6 8 10 12 2 1 0 1 2 3

Figure: The functions 6 — W ,(0) for the 80% sample quantile and the Huber
estimator from the gamma(8, 1) and standard normal distribution, respectively.
n=15.
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Consistency of M-Estimator

A

: A : . P
The estimator 8, is used to estimate the parameter 6 aiming at : 6, — 0,
where 6 € © endowed with metric d.

Suppose that the 6,, maximizes the random (empirical) criterion function:

0 = arg max M,(0) = arg min —M,(6).
0cO 0O

where —M,,(0) =: L(Pp, P) can be seen as the empirical loss function.

Definition 8.3 (True parameter)

The 6 is usually defined as the maximization of the deterministic (true)
criterion function: M(0) =: Emy(X)

0o = argmax Emg(X) = arg min E—my(X).
0cO 0cO

We wish to prove that d(@,,7 o) £ 0 under some regularity conditions

Ma(0) 5 M(6),  every 6.

by LLN. The convergence above is not uniformly for § € O!
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Consistency of M-estimator

Given an arbitrary random function @ — M,(6), consider estimators {0,}
satisfies the nearly maximization condition:

Mo (8,) > sup M, (0) — op(1)> M, (o) — op(1).

Example: —M,(6) is strongly convex. [iff M,(0) = O(1)I, >0V c ©]

Theorem 8.4 (Consistency of M-estimator)

Let M,, be random functions and let M be a fixed function of 0 such that
for every € > 0, if we have conditions:

C1. Uniformly convergence: sup |M,(0) — M(6)| 5o;
0cO

C2. Well-separation(ldentifiability): sup M(0) < M (6p);
0:d(0,00)>¢

C3. The {,} satisfies nearly maximization condition . Then, 0, 5o

v
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A counterexample for well-separation

Figure: Example of a M-function whose point of maximum is not well separated.
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Proof of Theorem 8.4

By the well-separation assumption C2, Ve >0, 37 > 0 s.t.:
M(0) < M (6p) — n for every 6 with d(0,6p) > ¢
Put 6 = 6,. Thus, {d(0,,00) > ¢} € {M(8,) < M(6p) —n}. Then
P{d(D,,00) > e} < P{M(0o) — M(6,) > n} 5 0. (10)
Next, we show that “20" is valid by using C3 and C1. By C3, it gives
Ma(Ba) > My (80) — 0p(1) = M (60) — op(1). (11)
where the “="in (11) is by C1: M,(0) 5 M(8) for V8 € ©. Using (11),
M(6o) — M(D,) < Ma(B) — M(Bn) + 0p(1)
< sup [My(0) = M(6)| + o (1) 50 [by C1l.

Let n — oo in (10), it implies d(0,, 6o) 5o.
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Consistency under the modification of C1 in Theorem 8.4

Corollary 8.5

Under the (i) uniformly convergence C1 in Theorem 8.4, if we have :

(ii). Unique maximization: M(6) =: Emg(X) is uniquely maximized at
bo,

(iii). Compactification: The © is compact;

(iv). Continuous M-function: The M(f) is continuous. Then, 6, 5o
for any 0, satisfying (v) M,(6,) > M, (60) — op(1).

Proof: For V§ > 0, let Bs(6p) := {6 : d(0,00) < 6}. By (ii-iv), we have

sup  M(0) =: M(6%) < M(6p) for a 8" € © N B§(6p).
H€ONBE(6o)

For sufficient large n, 3 & > 0 s.t.

LW @) 3)
M(@,) S Mo(6,) — /3 > Mn(f0) —2¢/3 > M(f) —e  (12)
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A, , A2, .3, o
In (12): “>" is by (i) and “>" is due to (v) and “>" stems from (i), i.e.

@ From (i) sup [Ma(0) — M(6)| > 0. E
0O

@ Taking op(1) < /3, then M,(0,) > M, (60) — op(1) > M, (60) —¢/3
with probability approaching 1 (wpal). E;

@ The same as (1). E3

Let e = M(0) — M(0*) > 0, plugging this € into (12) we get

M(0,) > M(6*) wpal

by P(El NEN E3) > P(El) + P(Eg) + P(Eg) - 2.

It should be noted that

{M(8,) > M(6%)} C {d(B,,00) < 6}

since 6* maximizes M(0) only in © N B§ (o).

Then by letting n — oo

1+ P{M(8,) > M(0")} < P{d(f,,60) < 6} < 1.
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Consistency of Z-Estimator

Theorem 8.6 (Consistency of Z-Estimator)

Let V,, be random vector-valued functions and let V be a fixed vector-
valued function of 0 such that for every € > 0, if we have :
CI*. Uniformly convergence: sup |[|[V,(0) — V(0)| — O;

0O

C2*. Well-separation (ldentifiability):

inf V(o 0=|wv(0
V)| >0 = [V (6)

C3*. The {0,} satisfies nearly zero condition: W ,(0,) = op(1). Then,

7

0, 5o

Proof: This follows from the Consistency of M-estimation by applying
Mn(0) = —=[[Wa(0)] and M(0) = —[|W(0)].
We can see that nearly maximization turns to nearly zero condition:

~Wa(@a)ll = ~[IWn (80) || — 0p(1) = ~[|¥ (60) || — 0p(1) = —0p(1)-
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Consistency without in uniformly convergence

Lemma 8.7 (p47 of vdv)

Let © be a subset of the real line and let V,, be random functions and ¥ a

fixed function of 6 such that W ,(0) A V(0) for every 0. Assume that:
(al)Each map 0 — W,(0) is continuous and has exactly one zero 0y, (a2)

or is nondecreasing with W ,(0,) = op(1) ;
(b)Let 6y be a point s.t. W(6p —e) <0<V (y+¢), Ve > 0. Then,

0, 5o

Example 8.8 (Median)

The sample median @, is the zero 0 — W,(0) = n~! S sign(X; —0).
By the LLN, for every fixed 0,

V,(0) B w(0) = Esign(X — 0) = P(X > 0) — P(X < 0).
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Example 6.8 (con.)

The uniform convergence in C1* of Theorem 6.6 is hard to check. It will
need the theory of Empirical Process (will be studied in the next
half-semester) to establish the uniform convergence.

Applications to Statistics. Springer.

van der Vaart, A. W., Wellner, J. (1996). Weak Convergence and Empirical Processes: With
Van de Geer, S. A.(2000). Empirical Processes in M-estimation. Cambridge university press. J

In this case it is easier to apply Lemma 6.7.

@ The functions 6 — W ,(0) are non-increasing.

@ —V(f—c)<0<—W(ly+¢). To see (b),
W(Go—&):P(X>00—8)—P(X<90—8): 1*2P(X<90*€);
\U(eo) = P(X > 90) — P(X < 90) =0= P(X > 90) = P(X < 90) =0.5;
V(lp+e)=P(X>0p+e)—P(X<by+e)=1-2P(X < b+ e).

If X is continuous and the population median is unique, i.e.

P(X<0y—¢e)<05<P(X<by+e) Ve>0.
Applying W,(6) to (a2)+(b) of Lemma 6.7, it implies 4, 5 6.
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Wald's Consistency

The semi-continuity is a property that is weaker than continuity. A
function f € R is said to be upper semi-continuous (u.s.c.) if

limsup f(x) < f(xo).

[to be lower semi-continuous(l.s.c.) if —f is l.s.c.:liminf,_,,, f(x) > f(xo).]

A

3

A

\

Figure: An l.s.c. function.

L > ® >
X, \ M \

Figure: An u.s.c. function.

The u.s.c. M-function is used for Wald's Consistency. Condition,
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Wald's Consistency Condition

Let Pmyg : = Emg(X). Typically, the map 6 — Pmy has a unique global
maximum at a point 6y, but here we allow multiple points of maximum

©¢ := {0 € © : Pmy, = sup Pmg} # (0 M attains its local maximum.
[/

Theorem 8.9 (Wald's consistency for M-estimator)

For every compact set K C ©, Wald's consistency Conditions for
P(d(#,,©0) > ¢, 0, € K) — 0 is that

WI. U.S.C. condition: Let 0 — my(x) be u.s.c. for almost all x;
W2. Uniformly bounded on small-balls: For ¥ small-ball U C ©,
assume x — supgey my(x) is measurable and satisfies the

Esupgeymp(X) < 0o. (a DCT condition) (13)

W3. Nearly maximization on compact set: The {f,} satisfies

A

Mn(0,) > M, (6o) — op(1) for some 6y € ©y.
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Proof of Wald's consistency

o let B={0ec K:d(0,00) > e}, we are going to show:
P{d, € B} — 0.
@ If the function 6§ — Pmy is identically —oo, then ©g = © trivially. We
may assume that there exists tp € ©g such that Emg, > —oo, thus
E |mgy(X)] < o< by (13).
@ Fix some 0 € K and let U, | 0 be a decreasing sequence of open balls

around 6 of diameter converging to zero. Let
my(x) 1= supycy mg(x). For every /, the sequence

mg < my, = sup my(x) is decreasing in / (14)
oeU,
and taking limit in (14) we have

my < lim my, < my-a.s.
u—o

where the last < by the upper semi-continuity of my(x).
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e With my, | mg a.e., the monotone convergence theorem for sequence
{—my,} implies that:
Emy,(X) — Emg(X) (which may be —oc0).
which shows that Emy,(X) — Emy(X) < Emy,(X) V (6 ¢ ©g) since
0o maximizes Emg(X).

@ Then there exists an open ball Uy who covers 6 such that
Emy, (X) < Emg,(X), V 0 ¢ ©g, 3 k € N. (15)

@ Let Uy be the open ball containing 6, then B can be covered by
{Up : 0 € B} by the compactness of K. Let Up,,--- , Up, be the finite
subcovers, then we have by LLN:

supP,mg < sup P,mg 2= sup Emg(X) < Emg,(X)  (16)
0eB 9€U9j 9€U9j
j:17"'7p ./:111p

where the = is by covering and the last < is from (15).
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@ On the other hand, by the covering and by the assumption of nearly
maximization on compact set, the event {0, € B} implies the event

Zup Ppmg > Prmy > Ppmg, — op(1) = Emg,(X) — op(1)
eB

where the = is by LNN applying to P, mg,.

Y

o Hence, we have {0, € B} C {supyeg Pnmy > Emg,(X) — op(1)}

which leads to

P{f,c B} <P {sup P,my > Emg,(X) — oP(l)} — 0.
0eB

the last limit stems from supycg Prnmyg < Emg,(X) a.s. in (16).
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Example: Cauchy MLE

Example 8.10 (Cauchy likelihood)
The pdf of Cauchy distribution Cauchy(0) is

1
{1+ (x—0)?)

fo(x) =

The MLE for location 6 based on the sample Xi,..., X, S Cauchy(0)

maximizes the log-likelihood function 6 — P, myg:

my(x) = —log (1 + (x — 0)2) .

The parameter space R is not compact, but we can enlarge the R to
R :=RU {%o0}.

i.e. the R is the compactification of R.
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Analysis via Wald's consistency Conditions

@ U.S.C. condition: The my(x) is continuous (also u.s.c.).
@ Uniformly bounded on small-balls:

—log{1 + (x — 0)?}

E sup my(X :/su dx < oo.

ocU (%) ocU {1+ (x — 0)%}

M_oo(x) = limsup mg(x) = —o0;  Myo(x) = limsup my(x) = —o0
0——o0 0 — 00

© Nearly maximization on compact set:

arg max M (6) := Mn(8,) > M, (o) — op(1)
€

@ Then, we apply Wald's theorem with © = R equipped with the metric
d(61,02) = |arctg 01 — arctg 05| .

e O ={6o}.
e Thus, taking K = R, we obtain that d(f,,©) 5o.
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Asymptotic Normality of Z-estimator

Suppose

@ Measurability. For each 6 in an open subset of Euclidean space, let
x > 1pg(x) be a measurable vector-valued function.

e Lipschitz condition. For every 61 and 6 in a neighborhood of 6y
and a measurable function v(x) with P[)(X)]? < oo, we have

140, (x) — v, ()| < 9 (x) [161 — 2] -

@ Moment and differentiability conditions. Assume that
P |[4g,]|> < oo and that the map 6 — Py is differentiable at a zero

0o, with nonsingular derivative matrix Vp, := aeP[W )]‘9:90.
o Consistency. Ppy; = op (n_l/z) and én — bo.

then

Vn(Bn—b0) = — V.t IZ% )+0op(1) S N(0, Vi Prg gy (Vi H)T).
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Asymptotic Normality of M-estimator

Suppose

@ Measurability. For each 0 in an open subset of Euclidean space, let
x — mp(x) be a measurable function such that § — my(x) is differentiable
at 6y for P-almost every x with derivative myg,(x).

@ Lipschitz condition. For every 61 and 0 in a neighborhood of 6 and a
measurable function 1(x) with P[m(X)]? < oo, we have

|mg, (x) = ma,(x)| < m(x) [[61 — 02|
@ Moment and differentiability conditions. Assume that the map 6 — Pmy
admits a second-order Taylor expansion
Pmg = Pmg, + (8 — 60)" Vi, (8 — 60) /2 + o([|0 — 6o]1%).
at a point of maximum 6y with nonsingular symmetric second derivative
matrix Vp, = %P[mg(X)]lezao.

o Consistency. P,m; > supyP,my — op (n=1) and 6,5 6. Then

V(0 = 00) = = Vg, T g, (X5) + 0p(1) S N(O, Vi M Pringy i Vg ).
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Asymptotic Normality of M- and Z-estimator

To prove AN of M- and Z-estimator, the Empirical Process is
indispensable. It will be taught detailly in the next half-semester.

Formal Settings

@ Let Xi,...,X, be a random sample from a P on a measurable space
(x,A).
@ We denote the empirical distribution by
Pyp=n" 21 0x;
as a discrete uniform measure, where J is the probability distribution
that is degenerate at x.

@ Given a measurable function f : X — R, we write P,f for the
expectation of f under the empirical measure P,, and Pf for the
expectation under P. Thus

P.f =150 F(X), Pf = [ fdP.

Actually, we treat P,,IP as operators rather than the measure.

— = = — S Re
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Asymptotic Normality of Z-estimator

In the heuristic proof for the AN of Z-estimator, we used ©,(6,) = O,(1). A
more vigorous proof is created via the so-called Donsker Class.

o Let G,f = \/n(Pof — PF) = v/n(2 S0, £ (X;) — Ef(x))

A class F = {f : X — Rmeasurable} istb Donsker if Vf € F, G,f 4 3 tight
process in (*°(F) where {>°(F) be the set of bounded functions on F.

Tight here means "Ve > 0 3 a compact set K s.t. P(x & K) <¢”

Example: (parametric class of liptchitz, vdv Ex 19.7)

Let F = {fy : 0 € ©} be a collection of measurable functions indexed by a
bounded subset © C RY. If there exists a measurable function m(x) such that
fo(x) is m(x)-Lipschitz w.r.t. Euclidean norm

o, (x) = o, (x)| < m(x) [|62 = 02|,V O, 6>

It can be shown that if P|m|" < co for some r > 0, the class of functions F is
P-Donsker.
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A Lemma for Random function

Lemma 8.11 (Lemma 19.24 in vdv.)
Suppose that :

(a) F is a P-Donsker class of measurable functions.

(b) {} be a set of random functions that take their values in F such
that

[0~ 670G = L~ )2 B0

for some fy € Lo(P), i.e. Pf¢ < oco. Then

G,,(f,, — 1) 2.0 and hence Gpfp ~ Gph.
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A Lemma for Random function

o In Lemma 19.24 in vdv, We'll set f, := wén, fo := g,, then

P, — Po,)% < P()|18n — bo]|> 2 0

as 0, = 0o, P(1))? < 0o and P(1))? < oo as assumed in the condition
of Z-estimator AN.
Thus, as F = {fy : 0 € ©} is P-Donsker, we have

Gnlfy — o) = /(Pnfy — PF) — /n(Pafy — Py) 2 0

= Vn(Pofy — PF) = v/n(Pofy — PRy) + 0p(1)
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Proof of AN of Z-estimator:

From the lemma and the last of the Remark,

Guthy, — Gatlgy = Ga(t — ) > 0. (17)

Note Gny5 = ﬁ(IP’,,wén - Pwén) and Fi)g, = Py, = 0, which is natural
as Ppyy = op(n'/?),

anén = \/E(Pn¢90 - P%n) + OP(]-)‘ (18)
(17) and (18) =
Gnd}@o = anén + OP(l) = \m(Plbeo nwg ) + OP( )

By Taylor Exp,

T S Um0+ 05(1) =~V g Pun(X)|  (B=t0) o1~

0=06y
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Proof of AN of Z-estimator:

Thus,
V1V (6 — 00) = —G i, + v/nop(||6n — 6ol|) (19)

and /n|| Vi, (8 — 60)|| = Op(1). Note )

Vil = 8oll < [V, IVl Vio (6 — b0) | = Op(1) + 0r(v/Alln — boll)-
So, /|0 = 6o|| = Op(1) and ||, — 0|l = Op(n~*/2)

from (19),

\/E(én—go = _V(g; \/721[)90 +OP )
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Median: Example 5.24 in vdv's book
@ The sample median maximizes the criterion function
0 — —27:1 ‘X,' = 0|
@ Assume that the distribution function F(x) of the observations
X1, ..., Xp % F is differentiable at its median 0 = F~1(1/2) with
positive derivative f (6p).

o It follows from Theorem 5.23 applied with centralized M function
my(x) = |x — 0] — |x|. As a consequence of the triangle inequality,
this function satisfies the Lipschitz condition with m(x) = 1:

|mp, (x) — mg,(x)| < m(x)|61 — 62|

due to max{|a| — |b|, |b| — |a|| < |a — b|}.
@ Furthermore, the map 6 — my(x) is differentiable at 6y except
x = 6o, with my,(x) = —sign (x — 6p). So

E (g, (X)) = E (sgn? (x — 6p)) = 1.
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o By partial integration,

Pmy = /|x—9|dF /|xde

— 6F(0) + /(0 0](9 — 20)dF(x) — (1 — F(8)) = 2/ F(x)dx — 6.

0

If F(x) is sufficiently regular around 6y, then Pmy is twice
differentiable

Pme — 2F(9) — 1, Lome — 2f(g).
@ More generally, under the minimal condition that F(x) is
differentiable at 6,
Pmy = ngo + 3 (6 — 60)% 2f (60) + (|6 — 6o|*).
Since V' Plrg,my 1 Vgt =1/ (2f (60))?, then

VA(Ba=00) = = V3o I 0y thay (X)+0p(1) S N(O, 1/ (2f (60)))

58 /95
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Nonlinear least squares: Example 5.27 in vdv's book

Suppose that we observe a random sample (X1, Y1),...,(Xnh, Ya)
consisting of the " covariates” X and "response variables” Y, follows

Y =fp(X)+e, E(e]X)=0 Var(e|X)=0?(X) < 0.

@ The least squares estimator that minimizes
6 S0y (Yi—fy (Xi))?
is an M-estimator for my(x,y) = — (y — fy(x))>.

@ |t should be expected to converge to the minimizer of the limit
criterion function

0~ Pmg =E(Y — 3 (X))? = E[Y — fy (X) + (g (X) — fo (X))]?
=E(fy, — f)? + B (20)

Thus the LS estimator should be consistent if g is identifiable from
the model, in the sense that 6 # 6y implies that

P(f(X) # fip(X)) > 0.
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Nonlinear least squares

@ Note that

ey (x,) = max (%, )] = |(v = Fos () = (v = Fan(x))?|
= 1f () = fon (] 125 = i, (x) — ()

@ We may assume that

[foy (x) = o, ()| < £(x) 162 — 1
and 3 ¢(x) s.t. fy(x) < c(x), VO € O.
Thus

[ma, (X, y) = ma, (x, y)| < |fa, (x) = fo,(x)] (2ly[ + 2¢(x))
ie. m(x,y) = f(x)[2]y| + 2¢(x)].
@ Assume that fp(x) is continuous differentiable at 6y, we check the
map 6 — Pmy admits a second-order Taylor expansion
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Nonlinear least squares

o By (20), we have
Prma = B(Y = £ (X)) + Be? = P, + [ 1) ~ () *p(x)ex
— Prmgy & [ 16— 60)T () + o([10 — 60IDI" )
— Py, + 56~ 00)72 [ ()T (x)p(x)c (6 — B0) + o(I8 — bo] )
@ So Vg, =2 [ f5,(x)f] (x)p(x)dx = 2P[fy]f,] and

mgy(x,y) = —2(y — fygo(x)) fgo(x) = —2efgo(x). If other conditions in
Thm 5.23 in vdv are fulfilled, we have

A Vot . d e T
Vn(0n—00) = — 72 3211 g, (Xi, Yi)+op(1) = N(O, Vio ! Pringy g, Vo h).
where (since e and X are independent)

Vo Pring i Vit = [2Pfo, 1 4Pe Pl £ 2P, £
22Ph, 11710 (X).
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Examples: Binary regression (GLMs, vdv’s book Ex. 5.11)

@ Suppose that we observe a random sample (X1, Y1),...,(Xn, Yn)
consisting of k-dimensional vectors of " covariates” X; , and 0-1
" response variables” Y following

Po(Yi=1Xi=x) =V (7Tx).

@ Here W : R — [0, 1] is a known continuously differentiable, monotone
function. The choices W(t) =1/ (1 + e~ ") (the logistic distribution
function) and W = & (the normal distribution function) correspond to
the logistic regression and probit model, respectively. The MLE
maximizes the (conditional) likelihood function

0 Iy po (Yi1X) =TI ¥ (87X) ™ (1= W (67X0))
o For identifiability of 0, we must assume that the distribution of the X;
is not concentrated on a (k — 1)-dimensional affine subspace of R*.

For simplicity, we assume that the range of X; is bounded and the
non-singularity of the matrix EXX .

Yi
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Examples: Binary regression (AN)

@ The consistency of 6, can be proved by combining Theorem
6.6 (Consistency of Z-Estimator).

o The asymptotic normality of \/n(f, — 6) is now a consequence of
Theorem 6.14 (AN of Z-estimator). The score function (Z-function)

— Ty
v (x) = Lo(y|¥) = 5 (9¥x) [\f ng ()QTX)] V(07 x)x

is uniformly bounded in x, y and 0 ranging over compacta, and
continuous in 6 for every x, y.

@ The Fisher information matrix is
v (07X)?

b= Ey v~

@ Asymptotic distribution for 0, is given by
(B, —6) % N (0,11 .
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Estimated Parameter

i.i.d
X]_,"',X ~ F(@’r])

@ 0 is the parameter of interest and 7 is the nuiance paramater.

@ Often we plug-in an estimator of 7, say 1, in the Z-estimating
equation,

nw(On):>in0nn ZwOnn XI =

@ This is essentially a 2-step procedure.
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Motivating Example

yi = mg,(xi) + €, E(eilxi)) =0

yi subject to missingness, and

P =

~J 1, if y; observed,
0, if y; missing.

MAR(Missing at Random assumption)

P(Ri = 1|xi,yi) = P(Ri = 1|x;) = wy,(x;)

wpy(+) istb to missing propensity function. Here is a binary regression
model.

e MAR = Given x;, R; and y; are independent.
@ the so-called ignorable missing at random
@ "ignorable”: the missing Y; is ignorable as long as we have X;
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How to estimate 67

Method 1: Do LSE on data with R; = 1.

ZR — mg(x;) )2

8 - —22 Ri(y1 — mg(x;) )amgéx") (21)

At 6, by assuming E(ej|x;) =0,

E {Ri(}’i - meo(Xi))ang%()q)} =E {Eiamgogm)%o(xi)} 20

So, the LS estimate that solves (21) is consistent and AN under centain
regular conditions.
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How to estimate 67

Method 2: Inverse Prob Weighted Estimation. (weight (21) by wy,(xi))

2’7: Ri()/i - mH(Xi))angiéXi) -0 (22)
) wﬂo(xi)
" Ri(yi — me(Xi))anée)f.X[) Omgq(x;)
E{,Z_; wao (X7) —5{6,‘80} -0

For the estimator from (21) that ignore missing values and IPW estimator
from (22) , which one is more efficient?
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How to estimate 67

However, ng is unknown, which can be estimated by the binary likelihood,

Lo(n) = [l ()1 = wy(x))F
i—1

n

() =Y _ {Rilogwy(xi) + (1 = Ri) log(1 — wy(x)))}
i=1

Oh(n) _ § { R 1-R; }awn(x,-) set o -
Q. = - =0=>
o~ S \ela)  T-wa)f o !
The (22) becomes
"\ Ri(yi — 1)) 56
Z (y mé)(X )) 20 _ g (23)

— wi(xi)

Chen, Leung and Qin(2008) showed the estimation for # based on (23)
which estimated 7] is more efficient than that using the true 7 in (22).
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Motivation Example

The parametric assumption of P(R; = 1|x;) = wy,(xo) may be too strong.
May consider a nonparametric form

P(R, = 1‘X,',y,') = P(R, = 1’X,') = w(Xo)
The missing propensity w(-) can be estimated via the kernel smoothing
method . .
L K(ZFE)R;
ant) = ZE ORI
>im1 KG55)

where K is a kernel, symmetric pdf, h is a smoothing bandwidth, h — 0,
nh — 0, as n — oo.

xx,

E(&n(x)) = E(;E ZK = X)R\xl e Xn)

e KO
“F ke

i=1

w(x;)) (a weighted average of {w(x;)}n)

can show Vnhd(&n(x) — w(x)) = K(u, v2) (x € RY) if h~ O(n~#4).
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Estimated Parameter

Ex 5.32 (Symmetric Location)

X1, Xo &0 F which is symmetric about 6p. Let x — (x) be

1 Xji—
antisymmetric (odd function). Consider Z-estimator via > >, ¥(*%
is an estimator of 0.

Pijo,.s = /w(%eo)dF(x) —0, V5,

6’0), &

since F(-) is symmetric about 6y and ¥ (-) is an odd function.
Hence, from Th 5.31 ,

A 1 1
\/E(H,, —bo) = _VOOEOW(PNQ/JGOWO - P7/190,n0) + OP(l)

The estimation is effectively using the true 7 as the effect of & is not
present in the leading order.
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Chapter 9: U-Statistics

Suppose X1,:-- , X, i.i.d. P € P, and h: R™ — R measurable for a finite
positive integer m < n, i.e. h(xq,- - ,xm) = h(xi,- -, x;,) where

(i1, ,im) is an arbitrary permutation of 1,--- , m. If not, one can always
define and replace by the symmetry:

1

ﬁ Z h(Xilv"' 7Xim)

"all permutation of (i1, ,im) of (1,---,m)

Let § = Eh(Xy, -+, Xm) if |EA(XL, -+, Xm)| < 0.
Definition 9.1

il
U, = ( :7 ) Ze:h(XiU -++,x;) is called a U-Statistics with kernel h of

order m, where ), denotes the summation over the () candidates of
m-distinct elements {i, -+ ,in} from {1,---  m}.
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e n1Y x; is a U-Statistic with kernel h(x) = x of order 1.
o n~13" xkis a U-Statistic with kernel h(x) = x* of order 1.
o (M)t > ¢ Xi -+ X, is a U-Statistic with kernel:

m
h(xt, - xm) = HXi
i=1

of order m.

2 (xi —Xj)2 _ 1 . 2 =2
n(n—1) Z 2 n-—1 in nx
1<i<j<n i=1

2

is a U-statistic of order 2 with h(xy, x2) = @
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Variance of U-Statistic

Assume Eh?(xq, -+, Xm) < 0o. For k € {1,--- , m}, let:

hk(Xla'” 7Xk) = E[h(X17 : 7Xm)‘X1 = X1, 7Xk = Xk] (24)

- Eh(X17 Tt 7Xk7Xk+17' o 7Xm)

Clearly, we have hy, = h, he(x1, -+ ,xx) = Ehgr1(x1, -+, Xk, Xk41), and:
Ehk(Xl, e ,Xk) = Eh(Xl7 e ,Xm) =0

Define he(x1,- -+ ,xk) = hi(x1,-- -, xx) — 0, then:

b-eu, = (1) SR ) @s)

14
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Hoeffding's Theorem

Theorem 9.2
-, Xp iiid. P € P with Eph?(Xy, -+, Xn) < oo, then:

Let Xq,--

varp(Un) = ( ! >_1i< ,: > ( 7,,__”; )5k (26)

m
k=1

where & = varp(hi (X1, -+, Xk)) satisfying:

(i) ’"7251 < varp(U) < “ém.

(i) (n+1)varp(Unst1) < nvarp(Up).

(iii) varp(Up) = %k)sz + 0 <n_(k+1)> as n— oo, if § # 0 but
§ =0 for j < k.

See Shao section 3.2.
August 12, 2023
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Let {i, - - ,im} and {j1, - ,jm} be two sets of m-distinct intergers from
{1 ony st {inimb O 0 m) {1k}, then
EPE(XL"'  Xkey X415 ,X,.m)/”,(xh...  Xky X1y 5 Xpm)

= p{EpFl(le"' Xy Xig 41, - ,xi Vh(xy, - - Xk Xty 5 X )X s Xk
Xjet1s "+ s Xjm }

:Ep/~7(x1, e ,xk,><jk+1/N7k(X1, ce Xk)

:Epﬂk(xl, e 7Xk)EP(Ep77(X1, e X X1 X1, Xk))

:Epﬁi(xl,--- ) Xk)

=Varphi(x1, -+, xk) = &k (27)
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Var,(Un) = Ep(Un — E(Up))?

-2
_ ( " ) 523 Eohlo A )
(27) ( :7 >2Zm: 3 Eh(x, -, %, )h(x, -+,

k=1 #of{i, ,im}N{j1, Jm =k

-(a) () Gn)s
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e (i) and (ii) can be derived from (26) and the fact that
0=¢6 <& <&E <, <Em = Varp(h)

where £ < &jyq for k=1,---  m—1 are implied by Jensen’s
inequality for conditional expectation.

e To appreciate (iii), note from (26) that

(o) () (a)s
-t (o)

2
_ m (n—m)---(n—2m+k+1)
—5k<k> =1 (n—m+1)

where the last factor is of the order O(-k).
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e For other terms in (26), as

(n) (D) A =
{(7)} gyl
N% _ O(nk1+1) for j>k+1
m 2
Var(U,) = ¢ ( ﬁk> fk + O(nk1+1) &

@ The leading order of Var(U,) is # where k is the first £, # 0, which
determines the rate of convergence of U, — E(U,) to 0, as shown in
the next theorem.

@ See Shao §3.2 for examples.
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Asymptotic Normality of U-Statistics

@ U-Statistic is NOT a sum of independent r.vs even Xi,---, X, are
independent when m > 1, which prevents the use of CLTs for
independent r.vs directly.

@ The idea now is to find a projection of U, on Xi,---, X, respectively,
by taking E(U,|X;), i=1,---,n. Let
Un =EU, + >°7_1 {E(Us|Xi) — EU,} which is i.i.d (or independent)
which admit CLT. So If we can show U, — Un is negligible, then we
can use Slutsky to establish AN of U,,.
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Asymptotic Normality of U-Statistics

Definition 9.3

Let U, be a U-statistic based on sample {X1,--- , X,}. The projection of U, on
{1, ,xn} is:

Un :EU,,+ZH:{E(U,,|X,-) —EU,} ::9+Zn:{gpn(x,-)—9} (28)

i=1

where ©,(X;) = E(U,|X).

If {X;} are i.i.d. (or independent), then {©,(X;)} are i.i.d. (or independent) too.
Clearly, EU, = EU, =0 (=6, if h=h,).

Lemma 9.4

Let U, be a U-Statistic with var(U,) < oo for each n. Then:

E(U, — U,)? = var(U, — U,) = var(U,) — var(U,)

The proof is based on cov(U,, U,) = var(U,) which is given.in Shao p179.
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Asymptotic Normality of U-Statistics

Theorem 9.5

Let U, be a U-Statistic given in Def 9.3 based on i.i.d. {X;}7_; with
ER(X1, -+, Xm) < 00.

(i) If& = var(hi(X)) > 0, then:

Vn (U, —EU,) -L5 N(0, m%&;)

(ii) If& =0 but & > 0, then:
n(U, —EU,) BLIN m(m—1) E A (X2 —1)
2 = J AL

where {X%,j}jzl are i.i.d. X% r.vs and \; are constant satisfying

August 12, 2023
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(i) only. See Serfling (1980) for (ii). Consider:

B(U|%) =E< " ) STE (X, 1 X,)1X)
4

where ¢; is all the combinations of (i1, - ,in) which contains 1 and ¢, is other
combinations of (i1, -+, i,) which does not contain 1. It is easy to check:

o] = n—1 o] = n—1
al=\m-1 ) 9= m

! n—1)! n—1)!
E(UnIX) = [(m —(1)!(n)— m)!hl(x1)+nﬂ(f7_m)_1)!6}

= Th(X) +—"0
n n

Hence,
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Subsequently,

U, =0+ {':hl(x,-)+ ”_nme—e}
i=1

:9+;Z{h1(x,-) -6} —9+':§n:7u(x,-)
i i=1

From the CLT for i.i.d. r.vs, as EA?(X;) < oo, which means:

Jn (Un - 0) 5 N0, mE)

if &1 > 0 since var(U,) = m?¢1/n.
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On the other hand, by Lemma 9.4,

E(U, — U,)? = var(U,) — var(U,)

2 2
T 020, 8Ty o(-2) = 0(n7?)

Hence,

_ N TRY:
P(ﬁ\un—u,,|>e) g”E(U"G,ZU")ZO(nl)%o

i.e. v/n(U,— U,) = 0,(1). AS a result,

V(Un — 0) = /5(Up — 0) + /n(Uy — Up)
= V(Up = 0) + 0p(1) = N(0,m*)
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Suppose Xi,- -+, X, i.i.d. P with EpX; = p and varp(X;) = 02 > 0. Let:
a7t
Un = < 2 ) Z )(,'1)<,'2
1<i<i<n
i.e. h(x1,%) = x1x2, 0 = EU, = Eh(Xy, X2) = p%. Then,
hl(X) = E{h(X17X2)|X1 = X} =E {X1X2|X]_ = X} = XU

hi(x) = xp— p? = (x = p)p

and & = var(h(X)) = ER(X) = p20? = 0 iff u = 0.

Furthermore, since Bg(xl,xz) = /~7(x1,xz) = x1x0 — i,

2
fg =E ((X1X2 — ﬂz)) = var(X1X2) = var (E(X1X2|X1)) + EVGI’(X1X2|X1)
= var(Xipt) + E(Xf0?) = 0?1 + 0?(0? + pi?) = 0?(0? + 24%) > 0
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If 4 # 0, from the non-degenerated version of CLT,

(U, — 1) 25 N(0,4&;) <= N(0, 44%0?)

If 4 =0, since U, = ﬁ > i Xi Xy, we have:

Z Xi Xy, = — ln(n—l)U,,—FiX,?

ih,h=1

Note that v/nX, -2 N(0,02), nX2/0? <5 y2 and
Slutsky Theorem,

1 p.
n—1 Y XP —» o% by

n—

n 1 < d.
nU, = 1nX3—n_1§X,2—>02(X%—1)
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Extensions

Suppose Xi,---, X, i.i.d. F with pdf f and kernel estimation of f with the kernel
K and bandwidth b:

~ 1 “ x=x\ A 1 u .
fo(x) = nbn;K< P >- EI;K[,H(X—X,)

where Kp, (t) = binK (b%) Assume b, — 0, nb, — 0o as n — oo.
Consider WT Test:

Ho: f =1y wherefy be a parameter pdf.

0, be a \/n-consistent estimation of § under Hy, i.e. 8, — 6 = O,(n~/?), for
instance the MLE.
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Extensions

A natural test statistic is

T = [ {0 -0} ox
_/{fn(x) - Efn(x)}2dx+/{5ﬁ(x) - fén(X)}2dX

+2 [ {700~ RGO} {EAG) - £,00} ox

=Ty +Th+ Ts

The Iast two terms T,, and T,, at most determines the asymptotic mean of T,,.
Let 0% := [ u?K(u)du:

T = i 2 (50 = o) K ) )
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Extensions

where
fin(x) = EKp,(x — xi) =
Hence
2
Tm = n(n—l)Z/ (i, )
1<J
= T"n + Tn12

T, contribute to the mean only.
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Extensions

where

n—1
hn(X17X2) =

[ Kby = x0) = a0} (K (y = 22) = nly)}

h, be symmetric and depend on n.
Hence, we can consider the following question only:

—1
n . n
U, = < m > g hn(Xiy, -+, xi,)  withlID {x;};_;
¢
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Chapter 10: Empirical Process

Let Xi,..., X, be a random independent sample from a distribution
function F(x), x € R. The empirical distribution function (EDF) is

Fo(t) = iiux,- <t}

i=1

which is a natural estimator for the unknown distribution F. Note that
nF,(t) is binomially distributed with mean nF(t), thus F,(t) is unbiased.

Classical LLN or CLT for EDF
o By the SLLN, F,(t) is also consistent: F,(t) 3 F(t), Vt..
@ The centered and scaled version of the empirical measure
Gnf := /n(Ppf — Pf) = \/Aﬁ S (F(X) — PF(X)).
@ Let F be equal to the collection of all indicator functions of the form
fe = 1(—oo,y, With t € R. By the CLT: G,f; ~ N(0, F(t)(1 — F(t))).
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Uniform LLN for EDF
The Glivenko-Cantelli theorem extends the LLN for EDF and gives uniform
convergence

S

[Fn — Flloo = sup [Fa(t) — F(£)| = 0.
teR

@ Motivation 1. Historically, empirical process theory has one of its
roots in the study of goodness-of-fit statistics.
[The first goodness-of-fit statistic is Pearson’s chi-square statistic. It is performed
by discretely binning a continuous distribution into a more tractable multinomial
distribution. However, the discretization in chi-square statistic leads to a loss in
statistical power. To remedy this problem, Kolmogorov introduced the statistics

Kn = sup|F,(t) — F(t)]
teR

to directly measure the maximum functional distance between F,(t), F(t).]
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Uniform CLT for EDF

Kolmogorov distribution

The Kolmogorov distribution is the distribution of the random variable

K= sup [B(t)|
te[0,1]

where B(t) is the Brownian bridge. The cumulative distribution function
of K is given by

Pr(K <x)=1-237%,(-1)k! e—2K2x? @Ziozl o (2k=1)*7/(8x?)

V.

Uniform CLT for EDF
Under null hypothesis that the sample comes from the distribution F(x)

VK, =% sup |B(F(t))].

A\

Theory of Empirical Processes aims to establish the uniform_convergence,
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Motivations of Empirical Process

@ Motivation 2. The uniform convergence condition in Consistency of
M- and Z-estimator is hard to check.

Theorem 10.1 (Consistency of M-estimator)

Let M, be random functions and let M be a fixed function of 6 such that for every
€ > 0, if we have conditions:

C1. Uniformly convergence: sup |M,(8) — M(0)| 5o
0€0

C2. Well-separation; C3.The {0,} satisfies nearly maximization condition. Then 0, 5o

v

Theorem 10.2 (Consistency of Z-Estimator)

Let W, be random vector-valued functions and let W be a fixed vector- valued function
of 0 such that for every € > 0, if we have :
CI*. Uniformly convergence: sup [|[W,(6) — V(6)|| — O;

)

C2*. Well-separation; C3*.The {0,} satisfies nearly zero condition. So, 0, Lo.
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Motivations

@ Motivation 3. When controlling the non-independent summation of
a function of the random sample indexed by a common estimator 6.
It false to use any sort of classical LLN or CLT.

Given an estimator é, we want to study its asymptotic properties for
summation some function f;(X;),

o 11fy (Xi) — Efyy(Xi)], is the "true” parameter.

A Possible Solution

Prove a uniform version (the suprema of empirical processes) for all
possible 6 on a set K, which is usually stronger than what is needed.

#0606 ~ B0 < sup |1 [f (X) ~ Efp(X))
i=1 o€ i=1

Fortunately, the summation in the sup enjoy independence.

= = = — Ty
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